
i

ACO Based FIR Filter Implementation on FPGA

A Project report submitted in partial fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

Ch. Rohit (318126512127) N. Pujitha Vaidya (318126512161)

Ch. Phani (318126512128) Y. Sarvendra (318126512179)

Under the guidance of

 Dr.S. Srinivas

Associate Professor

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES
(UGC AUTONOMOUS)

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘B+’ Grade)
Sangivalasa, Bheemili mandal, Visakhapatnam dist. (A.P)

2021-2022

ii

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Dr.S.Srinivas,

Associate Professor, Department of Electronics and Communication Engineering,

ANITS, for his guidance with unsurpassed knowledge and immense encouragement. We

are grateful to Dr. V. Rajya Lakshmi, Head of the Department, Electronics and

Communication Engineering, for providing us with the required facilities for the

completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa,

for their encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions

during reviews helped us in accomplishment of our project. We would like to thank all

non-teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. Finally we thank everyone for supporting us directly or

indirectly in completing this project successfully.

 PROJECT STUDENTS:

Ch. Rohit (318126512127),

N.Pujitha Vaidya (318126512161),

Ch. Phani (318126512128),

Y. Sarvendra (318126512179)

iv

CONTENTS

ABSTRACT

LIST OF FIGURES

LIST OF EQUATIONS

CHAPTER 1 - INTRODUCTION

1.1 INTRODUCTION ... 1

1.2 BACKGROUND WORK .. 2

CHAPTER 2 - INTRODUCTION TO FIR FILTERS

2.1 INTRODUCTION ... 3

2.2 FIR FILTER ... 3

2.3 IIR FILTER .. 4

2.4 FIR AND IIR COMPARISON .. 4

2.5 DEFINITION OF FIR FILTER ... 4

2.6 FIR PROPERTIES ... 5

Require no feedback .. 5

Inherent stability .. 6

Phase Issue ... 6

2.7 FIR APPLICATIONS .. 6

Spatial Beamforming ... 6

Linear Predictive Coding ... 7

Linear Interpolation ... 7

Speech Analysis ... 7

Speech Modelling .. 7

Multi rate Signal processing .. 7

Averaging Filter ... 7

2.8 ADVANTAGES OF FIR FILTERS ... 7

2.9 DISADVANTAGES OF FIR FILTERS .. 8

CHAPTER 3 - MODIFIED DIFFERENTIAL EVOLUTION ANT COLONY
OPTIMIZATION ALGORITHM

3.1 INTRODUCTION ... 9

3.2 WORKING OF ACO ... 10

v

3.3 ALGORITHM AND FORMULA ... 12

MUTATION .. 12

CROSSOVER .. 12

SELECTION .. 12

3.4 PSEUDO CODE FOR DE-ACO ALGORITHM .. 14

3.5 APPLICATIONS ... 15

CHAPTER 4 - FIR FILTER USING DE-ACO ALGORITHM

4.1 DESIGN OF FINITE IMPULSE RESPONSE FILTER.. 16

4.2 FILTER OPTIMIZATION TECHNIQUES .. 19

USING A DIFFERENTIAL EVOLUTIONARY ALGORITHM ... 19

A. Mutation operation .. 19

B. Crossover operation ... 20

C. Selection Operation ... 20

CONTROL PARAMETERS OF DE ALGORITHM .. 21

USING ANT COLONY OPTIMIZATION ALGORITHM .. 22

4.3. DIFFERENTIAL EVOLUTION-ANT COLONY OPTIMIZATION ALGORITHMS 22

4.4 DE-ACO-BASED FIR FILTER DESIGN ... 23

4.5 ADVANTAGES OF DE-ACO ALGORITHM ... 24

4.6 FIR FILTER DESIGN ... 24

4.7 LOGIC OF THE FIR MODULE ... 26

CHAPTER 5 - RESULTS

5.1 SIMULATED RESULTS FROM MATLAB FOR ACO .. 31

SIMULATED RESULTS FROM MATLAB FOR FIR FILTER ... 32

COEFFICIENTS OBTAINED FROM FILTER DESIGNER ... 32

5.2 FIR FILTER OUTPUTS FROM VIVADO ... 33

VIVADO SYNTHESIS REPORT ... 37

UTILIZATION REPORT FOR THE DESIGN ... 38

CONCLUSION

vi

APPENDIX

A.OVERVIEW OF DIGITAL SYSTEM DESIGN AND VLSI ARCHITECTURE 43

1.EVOLUTION OF COMPUTER SYSTEM DESIGN .. 43

2.DESIGN SPECIFICATION ... 44

3.BEHAVIOUR DESCRIPTION .. 44

4.BEHAVIOUR DESCRIPTION TO RTL ... 44

5.FUNCTIONAL VERIFICATION AND TESTING ... 45

6.VLSI ARCHITECTURE .. 45

7.VLSI DESIGN FLOW .. 45

B.INTRODUCTION TO VERILOG ... 47

1.INTRODUCTION .. 47

2.FEATURES OF VERILOG HDL... 47

3.MODULE DECLARATION .. 48

4.VERILOG MODELLING .. 49

Gate level modelling .. 49

Data-flow modelling .. 50

Behavioural modeling .. 50

5.SOFTWARE DESIGN AND DEVELOPMENT ... 51

6.SOFTWARE TOOLS USED .. 52

XILINX VIVADO,MATLAB ... 52

7.LANGUAGE SUPPORT .. 52

VHDL,Verilog,System Verilog ... 52

C.XILINX VIVADO .. 53

1.XILINX VIVADO ISE DESIGN SUITE (16.1version) ... 53

2.ISE PROJECT NAVIGATOR .. 54

Creating a New Project .. 55

3.STEPS FOR DESIGN ENTRY .. 57

4.Working through the Basic Project Flow .. 57

Project Manager ... 58

Project Settings: ... 58

Add Sources: .. 59

Define Module: .. 61

REFERENCES

PUBLICATIONS

1

ABSTRACT

 In this modern era of rapid development, the usage of VERY LARGE-SCALE

INTEGRATION (VLSI) architecture is in high demand and because of this rapid

advancement in VLSI design posed a number of challenges. It is important to optimize

the usage of different design areas such as chip size, component separation, inter-

connected length. FIR filter can be designed by formulation of specifications which are

for a particular application requirement. In this project, an efficient FIR filter will be

designed using ANT COLONY OPTIMIZATION ALGORITHM. Also, an optimization

environment will be designed such that filter components are upgraded on the VLSI

design metrics such as area, speed or power and synthesizable code in Hardware

Description Language [HDL] will be generated.

PURPOSE: This project aims to concentrate on an efficient FIR filter architecture in

combination with the differential evolution ant colony algorithm (DE-ACO). For the

design of FIR filter, ACO is found to be very efficient because of its non-conventional,

nonlinear, multi-modal and non-differentiable nature. It converges to find the optimal

final solution.

APPROACH: FIR filters are extensively used for many low power, low complexities,

less area and high-speed digital signal processing applications since it can assure stability

and recognize linear phase characteristics. Ant Colony algorithms form a class of

proposed metaheuristics for solving difficult optimization problems.

KEYWORDS: VLSI DESIGN, DE-ACO, FIR FILTER, XILINX ISE,

METAHEURISTIC.

1

LIST OF FIGURES

FIGURE 1.FIR FILTER BLOCK DIAGRAM ... 5
FIGURE 2.ACO ALOGORITHM FINDING SHORTEST PATH ... 11
FIGURE 3.DIFFERENT STAGES OF ANT COLONY OPTIMIZATION ALGORITHM .. 11
FIGURE 4.BASIC STRUCTURE OF FIR FILTER .. 17
FIGURE 5.FREQUENCY RESPONSE OF LOW PASS FILTER .. 17
FIGURE 6.FLOW CHART TO DESIGN FIR FILTER ... 18
FIGURE 7.FLOW CHART OF DE ALGORITHM ... 21
FIGURE 8.REGISTER TRANSFER LEVEL DESIGN ... 24
FIGURE 9.15 TAP LOW PASS FIR FILTER COEFFICIENTS ... 25
FIGURE 10.SIGNED KEYWORD IN VERILOG .. 25
FIGURE 11.CONVERSION OF FRACTIONAL VALUE TAPS TO HEX FORM .. 26
FIGURE 12.15 INPUT SAMPLES FOR 15 TAPS OF FILTER ... 26
FIGURE 13.MULTIPLYING EACH INPUT SAMPLE WITH COEFFICIENT VALUE .. 27
FIGURE 14.OUTPUT DATA STREAM FROM THE FILTER ... 27
FIGURE 15.AXI STREAM TIMING DIAGRAM .. 28
FIGURE 16.SETTING TEST BENCH AS TOP ... 28
FIGURE 17.LOGIC DESIGN FOR 15 TAP FIR MODULE .. 29
FIGURE 18.OPTIMIZED OUTPUTS FROM ANT COLONY OPTIMIZATION ... 31
FIGURE 19.FIR FILTER DESIGNER USING REQUIRED PARAMETERS ... 32
FIGURE 20.COEFFICIENTS OBTAINED FROM FILTER DESIGNER .. 32
FIGURE 21.COEFFICIENTS OBTAINED FROM FILTER DESIGNER (HEX) .. 33
FIGURE 22.1.FIR FILTER OUTPUTS FROM VIVADO .. 33
FIGURE 22.2.FIR FILTER OUTPUTS FROM VIVADO .. 34
FIGURE 22.3.FIR FILTER OUTPUTS FROM VIVADO .. 34
FIGURE 23.1.SCHEMATIC DIAGRAM FOR FIR FILTER .. 35
FIGURE 23.2.SCHEMATIC DIAGRAM FOR FIR FILTER .. 35
FIGURE 24.1.IMPLEMENTED DESIGN ... 36
FIGURE 24.2.IMPLEMENTED DESIGN ... 36
FIGURE 25.POWER UTILIZATION DETAILS .. 37
FIGURE 26.VIVADO SYNTHESIS REPORT ... 38
FIGURE 27.UTILIZATION REPORT FOR THE DESIGN .. 41
FIGURE 28.VLSI DESIGN FLOW ... 46
FIGURE 29.XILINX VIVADO PROJECT NAVIGATOR WINDOW .. 54
FIGURE 30.CREATING NEW PROJECT WINDOW ... 55
FIGURE 31.GUIDING WIZARD FOR THE PROJECT.. 55
FIGURE 32.CREATING A PROJECT NAME .. 56
FIGURE 33.SPECIFING THE RTL PROJECT .. 56
FIGURE 34.CHOOSING A BOARD FOR PROJECT .. 57
FIGURE 35.PROJECT SUMMARY ... 57
FIGURE 36.MAIN WINDOW FOR THE PROJECT .. 58
FIGURE 37.PROJECT SETTINGS WINDOW... 58
FIGURE 38.ADDING THE SOURCE FILES .. 59
FIGURE 39.WIZARD THAT SHOWS TO THE DESIGN SOURCE .. 59
FIGURE 40.CREATING A NEW FILE NAME FOR NEW DESIGN SOURCE .. 60
FIGURE 41.SELECTING THE TYPE OF FILE AND LOCATION .. 60
FIGURE 42.MODULE DEFINING WITH PORTS ... 61
FIGURE 43.CREATING THE SIMULATION SOURCE .. 62

1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The Finite Impulse Response (FIR) filters are extensively used in digital signal

processing applications since it can assure stability and recognize linear phase

characteristics. The circuit scale tends to be large while implementing high order FIR

filter in hardware which increases the design cost and power consumption. The number

of digits involved without zero in each coefficient corresponds to multiple shifters in the

multiplier. Various heuristic methods have been recommended to solve this problem in

the equitable computation time and applied. Artificial bee colony (ABC) and particle

swarm optimization (PSO) are the approaches applied to a continuous optimization

problem. The difficulty of the existing technique is solved by using a useful ant colony

optimization (ACO) algorithm. ACO, genetic algorithm (GA), simulated annealing and

other heuristic methods are known to generate acceptable solutions within a possible

time. A combinatorial optimization problem has been solved by the proposed ACO, and

it has demonstrated excellent performance in comprehensive problems. The design of

high-order discrete coefficient FIR filters is a large-scale problem, and the application of

ACO can be very effective in solving the above problem. The Z-plane transfer function

of FIR filter with only zeros and linear phase described by is used to find out the

magnitude and frequency response. The FIR filter has N number of points, and its z-

transform is given in eq. (1):

 𝐻(𝑧) = ෍ ℎ(𝑛)𝑧ି௡

ேିଵ

௡ୀ଴

 (1)

There is no feedback required for FIR filters. At present, ACO is widely used for various

optimization applications such as optimal design and scheduling problem of thermal units,

traveling salesman problem and quadratic assignment problem. This paper presents a novel

DEACO technique for optimizing power consumption. The research comprises of the

2

establishment of novel algorithm termed as DE-ACO which combines state of the art to the

power consumption and frequency domain specifications optimizing.

1.2 BACKGROUND WORK

Fir filters are stable, linear and easy to implement and hence they are widely used

in many consumer electronics and DSP applications. But, the main problem here is that

the FIR takes more time to execute and since there is no feedback it needs more number

of coefficients. For every extra coefficient there will be an extra memory requirement

and hence for a demanding system, the speed and memory requirements to implement an

FIR system can make the system unfeasible.

So, our project aimed to reduce the time of execution by minimizing the number of

coefficients needed. This can be done using ANT COLONY OPTIMIZATION technique

which reduces coefficients and gives only the required ones. So, our project aimed to

focus on designing some efficient reconfigurable FIR filter architectures.

3

CHAPTER 2

INTRODUCTION TO FIR FILTERS

2.1 INTRODUCTION

The digital filter is a discrete system, and it can do a series of mathematic processing to

the input signal, and therefore obtain the desired information from the input signal. The

transfer function for a linear, time-invariant, digital filter is expressed in eq. (2)

𝐻(𝑧) =
∑ 𝑏௝𝑧ିଵெ

௃ୀ଴

1 + ∑ 𝑎௜𝑧ିଵே
௜ୀ଴

 (2)

where ai and bj are coefficients of the filter in Z-transform

There are many kinds of digital filters, and also many different ways to classify

them. According their function, the FIR filters can be classified into four categories,

which are lowpass filter, high pass filter, bandpass filter, and band stop filter.

According to the impulse response, there are usually two types of digital filters,

which are finite impulse response (FIR) filters and infinite impulse response (IIR) filters.

According to the formula above, if ai is always zero, then it is a FIR filter,

otherwise, if there is at least one none-zero ai, then it is an IIR filter. Usually, we need

three basic arithmetic units to design a digital filter, which are the adder, the delay, and

the multiplier.

The following are the steps to design a digital filter:

1. Make sure of the property of a digital filter according to the given requirements.

2. Use a discrete linear time-invariant system function to approach to the properties.

3. Make use of algorithms to design the system function.

4. Use a computer simulation or hardware to achieve it.

2.2 FIR FILTER

 FIR filters are stable, linear and easy to implement and hence they are widely used

in many consumer electronics and DSP applications [8]. The finite impulse response

(FIR) filter is one of the most basic elements in a digital signal processing system, and it

can guarantee a strict linear phase frequency characteristic with any kind of amplitude

4

frequency characteristic. Besides, the unit impulse response is finite; therefore, FIR

filters are stable system. The FIR filter has a broad application in many fields, such as

telecommunication, image processing, and so on. The system function of FIR filter is

given by eq. (3):

𝐻(𝑧) = ෍ ℎ[𝑛]𝑧ି௡

௅ିଵ

௡ୀ଴

 (3)

where L is the length of the filter, and h[𝑛] is the impulse response.

2.3 IIR FILTER

The Infinite Impulse Response (IIR) filter is recu rsive structure, and it has a feedback loop. The

precision of amplitude frequency characteristic is very high, and IIR filters are not linear phase.

2.4 FIR AND IIR COMPARISON

(1) Under the same conditions as in the technical indicators, output of the IIR filter has

feedback to input, so it can meet the requirements better than FIR. The storage units are

less than those of IIR, the number of calculations is also less, and it’s more economical.

(2) The phase of FIR filter is strictly linear, while the IIR filter is not. The better the selectivity

of IIR filter is, the more serious the nonlinearity of the phase will be.

(3) The FIR filter is non-recursive structure, finite precision arithmetic error is very small.

While IIR filter is recursive structure, and parasitic oscillation may occur in the operation

of IIR filter.

(4) Fast Fourier Transformation can be used in FIR filter, while IIR cannot.

(5) The IIR filter can use formulas, data and tables of the analog filter, and only a small amount

of calculation. While FIR filter design may always make use of the computer to calculate,

and the order of FIR filter could be large to meet the design specifications.

2.5 DEFINITION OF FIR FILTER
 In signal processing, a finite impulse response (FIR) filter from (figure1) is a filter

whose impulse response (or response to any finite length input) is of finite duration, because it

settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which

may have internal feedback and may continue to respond indefinitely (usually decaying).

5

The impulse response of an Nth-order discrete-time FIR filter (i.e., with a Kronecker delta

impulse input) lasts for N + 1 samples, and then settles to zero.

FIR filters can be discrete-time or continuous-time, and digital or analog.

Figure 1: FIR Filter Block Diagram

A discrete-time FIR filter of order N. The top part is an N-stage delay line with N + 1 taps.

Each unit delay is a z−1 operator in the Z-transform notation. The output y of a linear time

invariant system is determined by convolving its input signal x with its impulse response

For a discrete-time FIR filter, the output is a weighted sum of the current and a finite number

of previous values of the input. The operation is described by the following equation, which

defines the output sequence y[n] in terms of its input sequence x[n] as in eq. (4):

𝑦[𝑛] = 𝑏଴ 𝑥[𝑛] + 𝑏଴ 𝑥[𝑛 − 1] + ⋯ + 𝑏଴ 𝑥[𝑛 − 𝑁] = ∑ 𝑏௜ 𝑥[𝑛 − 1]ே
௜ୀ଴ (4)

Where, x[n] is the input signal, y[n] is the output signal, b(i) are the filter coefficients, also

known as tap weights, that make up the impulse response and N is the filter order; an th-order

filter has (N+I) terms on the right-hand side. The x(n-i) in these terms is commonly referred to

as taps, based on the structure of a tapped delay line that in many implementations or block

diagrams provides the delayed inputs to the multiplication operations. One may speak of a 5th

order/6-tap filter, for instance.

2.6 FIR PROPERTIES
An FIR filter has a number of useful properties which sometimes make it preferable to

an infinite impulse response (IIR) filter. FIR filters:

Require no feedback: This means that any rounding errors are not compounded by summed

iterations. The same relative error occurs in each.

6

Inherent stability: This is due to the fact that, because there is no required feedback, all the

poles are located at the origin and thus are located within the unit circle (the required

condition for stability in a Z transformed system).

Phase Issue: can easily be designed to be linear phase by making the coefficient sequence

symmetric; linear phase, or phase change proportional to frequency, corresponds to equal

delay at all frequencies. This property is sometimes desired for phase-sensitive applications,

for example data communications, crossover filters, and mastering.

The main disadvantage of FIR filters is that considerably more computation power in a

general purpose processor is required compared to an IIR filter with similar sharpness or

selectivity, especially when low frequency (relative to the sample rate) cutoffs are needed.

However, many digital signal processors provide specialized hardware features to make FIR

filters approximately as efficient as IIR for many applications.

2.7 FIR APPLICATIONS
FIR applications mainly involve in digital communications in the intermediate

frequency stages of the receiver. For instance, a digital radio receives and converts the

analog signal to the intermediate frequency and then converts it to digital using with a

digital to analog converter. Then uses the finite impulse response to choose the preferred

frequency. It is used in software radio, that permits easily adaptable filters with good

rejection and without changing hardware.

Spatial Beamforming:

It is a signal processing technique used in sensor arrays for directional signal transmission or

reception.[1] This is achieved by combining elements in an antenna array in such a way that

signals at particular angles experience constructive interference while others experience

destructive interference. Beamforming can be used at both the transmitting and receiving ends

in order to achieve spatial selectivity. The improvement compared with omnidirectional

reception/transmission is known as the directivity of the array. Beamforming can be used for

radio or sound waves. It has found numerous applications in radar, sonar, seismology, wireless

communications, radio astronomy, acoustics and biomedicine. Adaptive beamforming is used to

detect and estimate the signal of interest at the output of a sensor array by means of optimal (e.g.

least-squares) spatial filtering and interference rejection.

7

Linear Predictive Coding

It is a method used mostly in audio signal processing and speech processing for

representing the spectral envelope of a digital signal of speech in compressed form, using

the information of a linear predictive model. It is one of the most powerful speech

analysis techniques, and one of the most useful methods for encoding good quality

speech at a low bit rate and provides highly accurate estimates of speech parameters.

Linear Interpolation

In mathematics, linear interpolation is a method of curve fitting using linear polynomials to

construct new data points within the range of a discrete set of known data points.

Speech Analysis

Speech analysis is the process of analyzing the speech signal to obtain relevant information of

the signal in a more compact form than the speech signal itself.

Speech Modelling

Modeling is the process of utilizing your complete speech and language system to help your

child's developing speech and language system grow

Multi rate Signal processing

Iterate simply means “multiple sampling rates”. A multirate DSP system uses multiple sampling

rates within the system. Whenever a signal at one rate has to be used by a system that expects a

different rate, the rate has to be increased or decreased, and some processing is required to do so.

Averaging Filter

A Special implementation of a low pass algorithm is the averaging filter. It calculates the output

sample using the average from a finite number of input samples. The averaging filter is used in

situations where is necessary to smooth data that carrying high frequency distortion.

2.8 ADVANTAGES OF FIR FILTERS

FIR filter is always stable and simple. FIR filters have linear phase response. It is easy

to optimize and is Noncausal. Round of noise error is minimum. Both recursive, as well as

non-recursive filter, can be designed using FIR designing techniques.

8

For designing a filter having any arbitrary magnitude response, FIR designing techniques can

be easily applied and it gives good performance, robust in nature and the ease of

computational techniques for filter implementation. It has the requirement of large storage

and the incapability of linear phase response.

2.9 DISADVANTAGES OF FIR FILTERS

Require large storage requirements and cannot simulate prototype analog filter. For the

implementation of FIR filter complex computational techniques are required, it is hard to

implementation than IIR and is expensive due to large order, require more memory and a

time-consuming process.

9

CHAPTER 3

MODIFIED DIFFERENTIAL EVOLUTION ANT COLONY

OPTIMIZATION ALGORITHM

3.1 INTRODUCTION

The algorithmic world is beautiful with multifarious strategies and tools being

developed round the clock to render to the need for high-performance computing. In fact, when

algorithms are inspired by natural laws, interesting results are observed. Evolutionary

algorithms belong to such a class of algorithms. These algorithms are designed so as to mimic

certain behaviours as well as evolutionary traits of the human genome. Moreover, such

algorithmic design is not only constrained to humans but can be inspired by the natural

behaviour of certain animals as well. The basic aim of fabricating such methodologies is to

provide realistic, relevant and yet some low-cost solutions to problems that are hitherto

unsolvable by conventional means.

In computer science and operations research, the Ant Colony Optimization algorithm (ACO) is

a probabilistic technique for solving computational problems which can be reduced to finding

good paths through graphs. Artificial ants stand for multi-agent methods inspired by the

behaviour of real ants. The pheromone-based communication of biological ants is often the

predominant paradigm used. Combinations of artificial ants and local search algorithms have

become a method of choice for numerous optimization tasks involving some sort of graph,

e.g., vehicle routing and internet routing.

Different optimization techniques have thus evolved based on such evolutionary algorithms

and thereby opened up the domain of metaheuristics. Metaheuristic has been derived from

two Greek words, namely, Meta meaning one level above and heuriskein meaning to find.

Algorithms such as the Particle Swarm Optimization (PSO) and Ant Colony Optimization

(ACO) are examples of swarm intelligence and metaheuristics. The goal of swarm intelligence

is to design intelligent multi-agent systems by taking inspiration from the collective behaviour

10

of social insects such as ants, termites, bees, wasps, and other animal societies such as flocks

of birds or schools of fish.

In the natural world, ants of some species (initially) wander randomly, and upon finding food

return to their colony while laying down pheromone trails. If other ants find such a path, they are

likely not to keep travelling at random, but instead to follow the trail, returning and reinforcing it

if they eventually find food.

Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive strength.

The more time it takes for an ant to travel down the path and back again, the more time the

pheromones have to evaporate. A short path, by comparison, gets marched over more frequently,

and thus the pheromone density becomes higher on shorter paths than longer ones. Pheromone

evaporation also has the advantage of avoiding the convergence to a locally optimal solution. If

there were no evaporation at all, the paths chosen by the first ants would tend to be excessively

attractive to the following ones. In that case, the exploration of the solution space would be

constrained. The influence of pheromone evaporation in real ant systems is unclear, but it is very

important in artificial systems.

The overall result is that when one ant finds a good (i.e., short) path from the colony to a food

source, other ants are more likely to follow that path, and positive feedback eventually leads to

many ants following a single path. The idea of the ant colony algorithm is to mimic this behavior

with "simulated ants" walking around the graph representing the problem to solve.

3.2 WORKING OF ACO

 Ant Colony Optimization technique is purely inspired from

the foraging behaviour of ant colonies, first introduced by Marco Dorigo in the 1990s.

Ants are eusocial insects that prefer community survival and sustaining rather than as

individual species. They communicate with each other using sound, touch and

pheromone. Pheromones are organic chemical compounds secreted by the ants that

trigger a social response in members of same species. These are chemicals capable of

acting like hormones outside the body of the secreting individual, to impact the

behaviour of the receiving individuals. Since most ants live on the ground, they use the

soil surface to leave pheromone trails that may be followed (smelled) by other ants.

11

Figure 2: ACO Algorithm for Shortest Path

Ants live in community nests and the underlying principle of ACO is to observe the
movement of the ants from their nests in order to search for food in the shortest
possible path from (figure 2). Initially, ants start to move randomly in search of food
around their nests. This randomized search opens up multiple routes from the nest to
the food source. Now, based on the quality and quantity of the food, ants carry a
portion of the food back with necessary pheromone concentration on its return path.
Depending on these pheromone trials, the probability of selection of a specific path by
the following ants would be a guiding factor to the food source from (figure 3).
Evidently, this probability is based on the concentration as well as the rate of
evaporation of pheromone. It can also be observed that since the evaporation rate of
pheromone is also a deciding factor, the length of each path can easily be accounted
for.

Figure 3: Different Stages of Ant Colony Algorithm

Stage 1: All ants are in their nest. There is no pheromone content in the environment. (For

algorithmic design, residual pheromone amount can be considered without interfering with the

probability).

12

Stage 2: Ants begin their search with equal (0.5 each) probability along each path. Clearly, the

curved path is the longer and hence the time taken by ants to reach food source is greater than

the other.

Stage 3: The ants through the shorter path reaches food source earlier. Now, evidently they

face with a similar selection dilemma, but this time due to pheromone trail along the shorter

path already available, probability of selection is higher.

Stage 4: More ants return via the shorter path and subsequently the pheromone concentrations

also increase. Moreover, due to evaporation, the pheromone concentration in the longer path

reduces, decreasing the probability of selection of this path in further stages. Therefore, the

whole colony gradually uses the shorter path in higher probabilities. So, path optimization is

attained.

3.3 ALGORITHM AND FORMULA

The standard approach for solving an optimization problem is to design an objective

function which can replace the problem’s objectives while limited to its constraints. The DE

algorithm is a heuristic algorithm based on the population like GAs using the three operators;

Mutation, Crossover and Selection to optimize the cost function or detached function over the

successive generations.

DIFFERENTIAL EVOLUTIONARY algorithm is a heuristic algorithm which follows 3 steps

for solving an optimized problem.

MUTATION: Minimizes power consumption and reduces ripple errors of pass and stop band.

Due to which, ants select components according to previous phermone distribution and releases

pheromone on components they select.

CROSSOVER: New child is created by mutation of parents, which are selected in random,

bunch of 4 each time.

SELECTION: To select the shortest path which gives the required nodes.

As for the linear phase digital FIR filter design, the inputs of the algorithm are a group

of coefficients {h (0), h (1), ..., h (N - 1)}. Moreover, at the end of the optimization, only one

group with optimum fitness value will be obtained. In every generation, to produce a trial vector

each vector of the parent parameter is targeted for the crossover with a vector. The resultant trial

vector is called a child of the two parent vectors, and it will compete with the target vector in

13

the following steps. CR is the probability of crossover which the parameter values of fraction

controls and succeeded by the mutant. After mutation and crossover operations violate the

bounds; it is limited, and likewise the bounds are regulated. The child’s vectors are used to

calculate the objective function values.

ACO is used to calculate the shortest path between source and destination. The two

functions are mainly done by the ant that is in drift until finding the source of food (F) and then

back to the nest (N) depending on the pheromone trail on random. It is a chemical substance

that is released by ants when it goes into the search of food. Pheromone trails discover the

shortest path. Pheromones show in some path the common storage. It remains extremely

elementary. The optimum solutions from a finite number of solutions are calculated by

combinatorial optimization. It works on the domain of those optimization problems that have set

of appropriate solutions that will be discrete. Better results can be obtained for lesser

appropriate discrete solutions.

Compute probability P according to the probability equation using eq. (5):

𝑃௡,௞
௟௠(𝑡) =

ఛ೗భ௡,௞(௟)

ఛ೗భ௡,௞(௧)ାఛ೗బ௡,௞(௟)ାఛ೗భ௡,௞(௟)
 (5)

According to pheromone updation, the equation is eq. (6):

𝜏௟ଵ𝑛, 𝑘(𝑡 + 1) = 𝜌𝜏௟ଵ𝑛, 𝑘(𝑡) + ∑ ∆𝜏௡,௞
௟௠,௨(𝑡) + ∆𝜏௡,௞

௟௠,∗(𝑡)ఙିଵ
௨ିଵ (6)

The desired frequency domain specifications and power minimization are the dual

objectives to be considered while designing a filter. The proposed DE-ACO has a more

excellent performance with strong ability to find optimal solution and quick convergence speed.

The contribution of the present work is three-fold, firstly a novel optimization technique based

on the hybridization of a heuristic technique, i.e., ant colony algorithm and an Evolutionary

technique, i.e., DE algorithm is proposed, which conserves the individual advantages of both the

techniques, i.e., it improves the effectiveness; reduce the design error (ACO) and speeds up

execution process (DE), while discarding their limitations. The design of FIR filter is based on

the approach of optimization. It satisfies the dual objectives of minimizing power consumption

during implementation and reducing ripples in the stop band and pass band. In this approach,

ants in colony randomly select components according to previous pheromone distribution and

release pheromone on the components they select. The ants will eventually converge on a set of

components, thus completing the optimization. Secondly, a hybrid of DE and ACO gives a new

14

method of optimization called the DE-ACO. In DEACO, new offspring is created by the

mutation of the parent. In this work, gbest is taken as the parent. Gaussian distribution has been

considered. For mutation, four particles are chosen in random from the population. The

mutation of the parent creates an offspring using the weighted error between these particles’

positions. Weighted error between the position of child particles is eq. (7):

𝐼𝑓 ൫𝑟𝑎𝑛𝑑() < 𝐶𝑅 𝑂𝑅 𝑑 == 𝑘൯
𝑡ℎ𝑒𝑛 𝑇௜ௗ = 𝑃௚ௗ + 𝛿ଶ,ௗ

 𝛿ଶ,ௗ =
൫௉భ,೏ି ௉మ,೏൯ା(௉య,೏ି ௉ర,೏)

ଶ
 (7)

3.4 PSEUDO CODE FOR DE-ACO ALGORITHM

For each particle

Initialize particle

End

Do

For each particle

Calculate Fitness value

If the fitness value is better than the

best fitness value

 (pbest) in memory

Set current value as the new pbest

Endif

End

Choose the particle with the best fitness

 value of all the particles as the gbest

For each particle

Calculate Pheromone update using (11)

Calculate pheromone trial updating of

 ants using (12)

End For each particle in parent set,

Select 4 (or 6 for Gaussian distribution)

 particles

Evaluate weighed differences

15

Mutate the parent

End

For each particle in offspring set,

Calculate the fitness

If fitness(parent) < fitness(offspring) then

Replace parent with offspring

End

3.5 APPLICATIONS

 Ant colony optimization algorithms have been applied to many combinatorial

optimization problems, ranging from quadratic assignment to protein folding or routing

vehicles and a lot of derived methods have been adapted to dynamic problems in real variables,

stochastic problems, multi-targets and parallel implementations. It has also been used to produce

near-optimal solutions to the travelling salesman problem. They have an advantage

over simulated annealing and genetic algorithm approaches of similar problems when the graph

may change dynamically; the ant colony algorithm can be run continuously and adapt to changes

in real time. This is of interest in network routing and urban transportation systems. The first

ACO algorithm was called the ant system and it was aimed to solve the travelling salesman

problem, in which the goal is to find the shortest round-trip to link a series of cities. The general

algorithm is relatively simple and based on a set of ants, each making one of the possible round-

trips along the cities. At each stage, the ant chooses to move from one city to another according

to some rules:

1. It must visit each city exactly once;

2. A distant city has less chance of being chosen (the visibility);

3. The more intense the pheromone trail laid out on an edge between two cities, the

greater the probability that that edge will be chosen;

4. Having completed its journey, the ant deposits more pheromones on all edges it

traversed, if the journey is short;

5. After each iteration, trails of pheromones evaporate.

16

CHAPTER 4

FIR FILTER USING DE-ACO ALGORITHM

4.1 DESIGN OF FINITE IMPULSE RESPONSE FILTER

Finite impulse response (FIR) filter is a filter whose impulse response (or response to any

finite length input) is of finite duration as in eq. (8), because it settles to zero in finite time. The

output of the FIR filters depends on the present, and past input values as in eq. (9): and these

filters are named as non-recursive filters [1]. The multipliers, series of delays, and adders are

used to implement the FIR filter to create the filter’s output from (figure4). It is known as an all-

zero filter because it does not have any poles. They are also known as feed forward or transversal

filters.

ℎ(𝑛) = ൜
𝑏௞,0 ≤ 𝑛 ≤ 𝑁 − 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8)

 h(n) represents impulse responses at n = 1,2,3,N – 1 and N is the order of the filter

𝑦(𝑛) = ∑ 𝑏௞ 𝑥(𝑛 − 𝑘)ேିଵ
௞ୀ଴ (9)

where y(n) represents output of fir filter

𝐻(𝑧) = ∑ ℎ(𝑛)𝑧ି௡ேିଵ
௡ୀ଴ (10)

 H(z) represents transfer function of the FIR filter from eq. (10)

FIR filter is designed on the ideal filter approximation according to given design conditions. The

following parameters can specify an FIR digital filter: the orders of the filter = 15, pass band cut-

off frequency = 200kHz, stop band cut-off frequency = 355kHz, by using this stop band and pass

band ripple errors are minimized from (figure 5). The optimization is aiming to reduce the ripple

error of the pass band and stop band [10] while keeping a sharp transition band.

17

Figure 4. Basic Structure of FIR filter

Figure 5.Frequency Response of Low Pass Filter

The main focus of this project is on the implementation of a FIR in HDL, which can be

broken down into three main logic components

 A circular buffer to clock each sample into that properly accounts for the delays of the

serial input

 Multipliers for each of the taps' coefficient value

 The accumulator registers for the summing result from each tap's output.

Coefficients optimization is the main and high-effective aspect which effects the output of the

filter. Also, the cost function is introduced here. There are many ways to design Digital FIR filters,

such as windowing functions, frequency sampling method, and non-linear optimization algorithm

method. Evolving algorithms have been proved to be the digital FIR filter design. Moreover, the

following part will introduce the two of them namely Ant Colony Algorithm (ACO) and DE to

design FIR filters.

18

Figure 6.Flow Chart to Design FIR filter

19

4.2 FILTER OPTIMIZATION TECHNIQUES

The various iterative solutions are compared to get the optimum solution or satisfactory

solution for a given application which is done by the optimization algorithm. The algorithms are

deterministic which deal with specific rules for moving from one solution to the other. The algorithm

which has the probabilistic transition rule is known as stochastic.

USING A DIFFERENTIAL EVOLUTIONARY ALGORITHM

The standard approach for solving an optimization problem is to design an objective function

which can replace the problem’s objectives while limited to its constraints. The DE algorithm is a

heuristic algorithm based on the population using the three operators; Mutation, Crossover and

Selection to optimize the cost function or detached function over the successive generations [3]. As

for the linear phase digital FIR filter design, the inputs of the algorithm are a group of coefficients {h

(0), h (1), h (2),, h(N-1)}. Moreover, at the end of the optimization, only one group with

optimum fitness value will be obtained. In every generation, to produce a trial vector each vector of

the parent parameter is targeted for the crossover with a vector. The resultant trial vector is called a

child of the two parent vectors, and it will compete with the target vector in the following steps. After

mutation and crossover operations violate the bounds; it is limited, and likewise the bounds are

regulated [7]. The children vectors are used to calculate the objective function values.

A. Mutation operation

There are several versions of mutation operation. All of them aim to produce new values from the

original ones. An initial mutation individual vector 𝑦𝑖 is generated by eq. (11) randomly selecting

three members of the population, 𝑥𝑖1, 𝑥𝑖2 and 𝑥𝑖3. Then 𝑦𝑖 is produced as

𝑦𝑖 = 𝑥𝑖1 + 𝐹 (𝑥𝑖2 − 𝑥𝑖3) (11)

Where 𝐹 is a positive scale factor, effective values for which are typically less than one. All the

individuals will experience the mutation until D mutations have been made.

The most useful strategies are:

“Best/1.”

𝑦𝑖 = 𝑥𝑏𝑒𝑠𝑡 + 𝐹 (𝑥𝑖1 − 𝑥𝑖2) (11.1)

20

“Current to best/1.”

𝑦𝑖 = 𝑥𝑖 + 𝐹 (𝑥𝑖1 − 𝑥𝑖2) + 𝐹 (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) (11.2)

“Best/2.”

𝑦𝑖 = 𝑥𝑏𝑒𝑠𝑡 + 𝐹 (𝑥𝑖1 − 𝑥𝑖2) + 𝐹 (𝑥𝑖3 − 𝑥𝑖4) (11.3)

“Rand/2.”

𝑦𝑖 = 𝑥𝑖1 + 𝐹 (𝑥𝑖2 − 𝑥𝑖3) + 𝐹 (𝑥𝑖4 − 𝑥𝑖5) (11.4)

Where the index 𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5 are different with the current population 𝑖 which represent the

random different integers generated within range [1, 𝑁𝑃], NP is the number of parameter vectors.

B. Crossover operation:

After the mutation operation, a value 𝑣𝑗𝑖𝐺 is produced which is in the position of 𝑥𝑗𝑖𝐺.

Crossover operation is then applied to each pair of the target value 𝑥𝑗𝑖𝐺 and its

corresponding mutant value 𝑣𝑗𝑖𝐺 to decide a new value: 𝑢𝑗𝑖𝐺 from eq.(12) . DE employs

the crossover as the basic version:

𝑢௝௜
ீ = ቊ

𝑥௝௜
ீ , 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑣௝௜
ீ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12)

𝐶𝑅 is defined within the range (0.7, 1]. 𝑗𝑟𝑎𝑛𝑑 is a randomly chosen integer in the range

[1, D].

C. Selection Operation

After the mutation and crossover operations, some new parameters values are added to

the current population. Meanwhile, we will remove some of the members which exceed

the search space. Then, the cost function values of all the vectors are calculated. After

that, a selection operation is performed. The objective function value of each member

(𝑢𝑗𝑖 𝐺) is compared to that of its corresponding target vector 𝑓(𝑥𝑗𝑖 𝐺) one by one in the

current population. If the target vector has better objective function value than the

corresponding trial vector, the target vector will maintain and the trial vector will not

enter the population of the next generation. Otherwise, the trial vector will replace the

21

target vector in the population for the next generation. The selection operation can be

expressed as eq. (13):

𝑥௝௜
ீାଵ = ቊ

𝑢௝௜
ீ, 𝑖𝑓 𝑓൫𝑢௝௜

ீ൯ > 𝑓(𝑥௝௜
ீ)

𝑥௝௜
ீ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13)

Figure 7. Flow chart of DE Algorithm

Control parameters:

Suitable control parameters are important for DE algorithm to increase the speed of
searching.
1) 𝐹 ∈ [0.5, 1]
2) 𝐶𝑅 ∈ [0.8, 1]
1) 𝑁𝑝 = 10𝐷
Liu and L Ampinen in [14] set control parameters to 𝐹 =0.9, 𝐶𝑅 = 0.9.
In this chapter, we use the constant control parameter mechanism during the iteration and
the control parameter 𝑁𝑝 keeps no change as well. Both 𝐹 and 𝐶𝑅 are applied at the
individual level. The original DE algorithm has three control parameters that need to be

22

adjusted by the user. Different parameters could have influenced in different function
problems. When we implement a self-adaptive parameters mechanism in this design,
there is no apparent effectiveness in the result. So we still adapt the constant values for
this design.

USING ANT COLONY OPTIMIZATION ALGORITHM

ACO is used to calculate the shortest path between source and destination [4]. The two

functions are mainly done by the ant that is in drift until finding the source of food and then back to

the nest depending on the pheromone trail on random from eq. (14). It is a chemical substance that is

released by ants when it goes into the search of food [6]. Pheromone trails discover the shortest path

upon evaporation and reapplication of it which is updated frequently by eq. (15). Pheromones show

in some path the common storage. The optimum solutions from a finite number of solutions are

calculated by combinatorial optimization. It works on the domain of those optimization problems that

have set of appropriate solutions that will be discrete. Better results can be obtained for lesser

appropriate discrete solutions.

𝑃௡,௞
௟௠(𝑡) =

ఛ೗భ௡,௞(௟)

ఛ೗భ௡,௞(௧)ାఛ೗బ௡,௞(௟)ାఛ೗భ௡,௞(௟)
 (14)

𝜏௟ଵ𝑛, 𝑘(𝑡 + 1) = 𝜌𝜏௟ଵ𝑛, 𝑘(𝑡) + ∑ ∆𝜏௡,௞
௟௠,௨(𝑡) + ∆𝜏௡,௞

௟௠,∗(𝑡)ఙିଵ
௨ିଵ (15)

4.3. DIFFERENTIAL EVOLUTION-ANT COLONY OPTIMIZATION
ALGORITHMS

The desired frequency domain specifications and power minimization are the dual objectives to be

considered while designing a filter. The proposed DE-ACO has a more excellent performance with

strong ability to find optimal solution and quick convergence speed. The contribution of the present

work is three fold process.

Firstly a novel optimization technique based on the hybridization of a heuristic technique, i.e. ant

colony algorithm and an Evolutionary technique, i.e. DE algorithm is proposed, which conserves the

individual advantages of both the techniques, i.e. it improves the effectiveness; reduce the design

error (ACO) [5] and speeds up execution process (DE), while discarding their limitations. The

design of FIR filter is based on the approach of optimization. It satisfies the dual objectives of

minimizing power consumption during implementation and reducing ripples in the stop band and

pass band.

23

In this approach, ants in colony randomly select components according to previous pheromone

distribution and release pheromone on the components they select. The ants will eventually converge

on a set of components, thus completing the optimization.

Secondly, a hybrid of DE and ACO gives a new method of optimization called the DE-ACO. In

DEACO, new offspring is created by the mutation of the parent. In this work, gbest is taken as the

parent. Gaussian distribution has been considered. For mutation, four particles are chosen in random

from the population. The mutation of the parent creates an offspring using the weighted error

between these particles’ positions.

The mutation takes place according to:

𝐼𝑓 ൫𝑟𝑎𝑛𝑑() < 𝐶𝑅 𝑂𝑅 𝑑 == 𝑘൯

𝑡ℎ𝑒𝑛 𝑇௜ௗ = 𝑃௚ௗ + 𝛿ଶ,ௗ

𝛿ଶ,ௗ =
൫௉భ,೏ି ௉మ,೏൯ା(௉య,೏ି ௉ర,೏)

ଶ
 (16)

Where δ2 is the weighted error in different dimensions ,Tid is the offspring ,Pgd is the best position of

the parent from eq. (16). The random number between [0, 1] is less than the reproduction rate or the

position of the particle in any one randomly chosen dimension, k is mutated then the mutation takes

place. The parent might not be the same as offspring. Fitness function is also evaluated. The parent is

replaced by the only offspring and thus has better fitness. If no replacement takes place, then it will

be retained for next iteration.

4.4 DE-ACO-BASED FIR FILTER DESIGN

Thirdly, DE-ACO based FIR filter design is formulated.

The transfer function of the FIR filter is as follows eq. (17):
௬೙

௫೙
= 𝑎଴ + 𝑎ଵ𝑧ିଵ + 𝑎ଶ𝑧ିଶ + ⋯ + 𝑎௡𝑧ି௡ (17)

The particles are dispersed in a D dimensional search space, where D = N for FIR filter. The new

coefficient is used to calculate the particles fitness and iteration which improves the search. The error

obtained is below certain limit or the error is below after some iteration to obtain the result, and it

will be considered as the final result.

24

An error function is an approximate error used in the Parks McClellan algorithm for filter design:

𝐸(𝑤) = 𝐺(𝑤)[𝐻ௗ(𝑒௝௪) − (𝐻(𝑒௝௪)] (18)

Where, G (w) is used to provide different weights for the relative errors in different frequency bands

as the weighting function from eq. (18), 𝐻ௗ(𝑒௝௪) Is the frequency response of the desired filter and

𝐻(𝑒௝௪) is the frequency response of the approximate filter.

𝐹ଵ = max
௪ஸ௪೛

(|𝐸(𝑤)| − 𝛿௣) + max
௪ஸ௪ೞ

(|𝐸(𝑤)| − 𝛿௦) (19)

Where, δp and δs are the ripples in pass and stop bands and wp and ws are pass and stop band cut-off

frequencies respectively from eq. (19). The error is minimized by algorithms, and thus it increases

the fitness.

4.5 ADVANTAGES OF DE-ACO ALGORITHM
DE algorithm is a new heuristic approach mainly having three advantages.

Finding the true global minimum of a multimodal search space regardless of the initial parameter

values. Fast convergence. It uses only few control parameters [9]. Advantages of the ACO is inherent

parallelism, positive feedback accounts for rapid discovery of good solutions and used in dynamic

applications.

4.6 FIR FILTER DESIGN
The FIR filters are designed to optimize the coefficients that give the best frequency response.

The filter is implemented by Xilinx [2] integrated synthesis environment tool is shown in (figure 8).

FIR filter is introduced to reduce the ripple constant and also to reduce the power consumption. The

filter is sensitive to the positive edge of the clock and negative edge of reset. s_axis_tdata represents

input data to the filter and output data is in m_axis_tdata. The obtained output with a delay is 20 ns.

Figure 8.Register Transfer Level Logic Diagram

25

The FIR designed is composed of three main logic components: a circular buffer to clock each

sample into that properly accounts for the delays of the serial input, multipliers for each of the taps'

coefficient value, and the accumulator register for the summing result from each tap's output. Both

DE and ACO are implemented in MATLAB, and the coefficients are quantized to minimum word

length. The realizations of the filters are done using the transposed form structure. In the constant

coefficient FIR Filters, adders /subtractors replaced the multipliers which are called multiplier adders

(MA). Adders are realized using ripple carry adders.

Implemented a simple 15-tap low pass filter from (figure 9) FIR sampling at 1Ms/s with a passband

frequency of 200 kHz and a stop band frequency of 355kHz which gave me the following

coefficients:

Figure 9. 15 Tap Low Pass Filter Coefficients

Now after deciding on the order (number of taps) for your FIR and obtaining your coefficient

values, the next set of parameters that must be defined is the bit width of the input samples,

output samples, and the coefficients themselves. For this FIR, input sample and coefficient

registers to be 16 bits wide and my output sample register to be 32 bits since the product of two

16-bit values is a 32-bit value (the widths of the two values being multiplied add to give the

width of the product, so if chosen 16-bit input samples with 8-bit taps then the output samples

would be 24 bits wide).These values are also all signed, thus the MSB is used as the sign bit and

the lower remaining bits are what the value must fit into. To set these values as signed data type

in Verilog, the keyword signed is used as in (figure 10):

Figure 10. Signed Keyword in Verilog

26

The next thing to address is to handle the coefficient values in Verilog, the decimal point values

need to be converted to fixed point values. Since all of the coefficient values are less than one, all

15 bits (the MSB of the total 16 bits is the signed bit) of our registers can be dedicated to

fractional bits. The no. of bits in the register you want to dedicate to the integer part of the

number vs the fractional part of the number is decided. Therefore the math to convert the

fractional value taps is: (fractional coefficient value)*(2^(15)) from (figure 11) ,where any

decimal value of this product is rounded off and the two's compliment of the value is calculated

if the coefficient is negative.

Figure 11.Conversion of Fractional Value TAPS to Hex Form

4.7 LOGIC OF THE FIR MODULE

The first of which is the circular buffer which brings in a serial input sample stream from (figure

12) and creates an array of 15 input samples for the 15 taps of the filter.

Figure 12. 15 Input Samples for 15 Tap FIR Filter

27

Next, the multiply stage multiplies each sample by each of the coefficient values as in below (figure

13):

Figure 13.Multiplying Each Input Sample with Coefficient Values

The resulting values from the multiply stage are accumulated from (figure 14) by addition in a

register which ultimately is the output data stream from the filter.

Figure 14.Output Data Stream from FIR filter

Finally, the last part of the logic is the interface to stream data to and from the FIR module.

The AXI Stream interface is one of the most common, thus what I chose to implement. The key

aspects are the valid and ready signals which allow for the control of the flow of data between

upstream and downstream devices from (figure15). This means the FIR module needs to provide a

valid signal to its downstream device to indicate that it's output is valid data, as well as be able to

28

pause (but still retain) its output if the downstream device de-asserts its ready signal. The FIR module

must also be able to behave this same way with its upstream device on its master side interface.

Figure 15.AXI Stream Timing Diagram

There are two main things that need to be tested in the FIR module: the filter math and the

AXI stream interface. To accomplish this, a state machine in the test bench that generates a simple

200kHz sine wave is created and also toggles the valid signal on the slave side and the ready signal

on the master side of the FIR's interface. Under the simulation sources in the Sources window, set the

testbench module as the top-level file by right-clicking on it and selecting Set as Top from the

reference of the (figure 16).

Figure 16.Setting Test Bench as Top

29

෍ ℎ(𝑛)𝑧ି௡, 𝑛 = 0,1 … . 𝑁
ே

௡ୀ଴
 (20)

where N is the order of the filter which has (N) number of coefficients. h (n) is the filter’s impulse

response. It is calculated by applying an impulse signal at the input. The values of h(n) from eq. (20)

will find the type of the filter.

Figure 17.Logic Design of 15 tap FIR Module

The DE-ACO algorithm, the individual represents h(n). In each iteration, these individuals are

updated. Fitness of particles is calculated using the new coefficients. In each iteration, this fitness is

used to improve the search and results obtained after a certain number of iterations or after the error

30

is below a certain limit is considered to be the optimal result. Fitness of the individuals is calculated

using the filter coefficients. Because the FIR filter uses a linear symmetric structure from (figure 17),

the impulse response coefficients have symmetrical features. Then we symmetrically add the pre-

input x(n) for simplifying the design.

By using DE-ACO the desired magnitude response and filter coefficients are

obtained. Filter designed by the DE-ACO method produce better response in terms of

minimum stop band ripple magnitude and maximum stop band attenuation. Both DE and

ACO are implemented in MATLAB, and the coefficients are quantized to minimum

word length. The realizations of the filters are done using the transposed form structure.

In the constant coefficient FIR Filters, adders/ subtractors replaced the multipliers which

are called as multiplier adders (MA). Adders are realized using ripple carry adders .The

fitness based adaptive DE with ACO known as fitness based adaptive DEACO is used

for the design of 15th order FIR filters. It is revealed that DE-ACO has the ability to

converge to the best quality near-optimal solution and possesses the best convergence

characteristics among the algorithms. DEACO is more efficient in optimizing the filter

coefficients successfully. Maximum power consumption occurs during multiplication

operations. Hence, to reduce power consumption, the number of multiplications has to be

minimized. The number of SPT terms in the filter coefficients has to be optimally

minimized, without compromising on the filter response.

31

CHAPTER 5

RESULTS

5.1 SIMULATED RESULTS FROM MATLAB FOR ACO

Figure 18.Optimized Outputs from ACO Algorithm

32

SIMULATED RESULTS FROM MATLAB FOR FIR FILTER

Figure 19.FIR Filter Designing Using Parameters

COEFFICIENTS OBTAINED FROM FILTER DESIGNER

Figure 20.Coefficients Obtained from Filter Design

33

Figure 21. Coefficients Obtained from Filter Design in Hexadecimal

5.2 FIR FILTER OUTPUTS FROM VIVADO

Figure 22.1. FIR Filter Outputs from Vivado

34

Figure 22.2. FIR Filter Outputs from Vivado

Figure 22.3. FIR Filter Outputs from Vivado

35

Figure 23.1. Schematic Diagram of FIR Filter Implementation

Figure 23.2. Schematic Diagram of FIR Filter Implementation

36

Figure 24.1. Implementation Design

Figure 24.2. Implementation Design

37

Figure 25. Power Utilization Details

VIVADO SYNTHESIS REPORT

Start RTL Component Statistics

Detailed RTL Component Info:

Finished RTL Component Statistics

Start RTL Hierarchical Component Statistics

Hierarchical RTL Component report
Module FIR
Detailed RTL Component Info :

38

+---Adders :
2 Input 4 Bit Adders := 1
+---Registers :
32 Bit Registers := 1
16 Bit Registers := 10
4 Bit Registers := 2
1 Bit Registers := 3
+---Muxes :
2 Input 4 Bit Muxes := 2
3 Input 1 Bit Muxes := 1

Finished RTL Hierarchical Component Statistics

Figure 26. Vivado Synthesis Report

UTILIZATION REPORT FOR THE DESIGN

Utilization Design Information

Table of Contents

1. Slice Logic
1.1 Summary of Registers by Type
2. Memory
3. DSP
4. IO and GT Specific
5. Clocking
6. Specific Feature
7. Primitives
8. Black Boxes
9. Instantiated Netlists

1. Slice Logic

39

1.1 Summary of Registers by Type

+-------+--------------+-------------+--------------+
| Total | Clock Enable | Synchronous | Asynchronous |
+-------+--------------+-------------+--------------+
0	_	-	-
0	_	-	Set
0	_	-	Reset
0	_	Set	-
0	_	Reset	-
0	Yes	-	-
0	Yes	-	Set
21	Yes	-	Reset
0	Yes	Set	-
210	Yes	Reset	-
+-------+--------------+-------------+--------------+

2. Memory

+----------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------+------+-------+-----------+-------+
Block RAM Tile	0	0	135	0.00
RAMB36/FIFO*	0	0	135	0.00
RAMB18	0	0	270	0.00
+----------------+------+-------+-----------+-------+
* Note: Each Block RAM Tile only has one FIFO logic available and therefore can
accommodate only one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a
Block RAM Tile, that tile can still accommodate a RAMB18E1

3. DSP

+----------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------+------+-------+-----------+-------+
| DSPs | 12 | 0 | 240 | 5.00 |
| DSP48E1 only | 12 | | | |
+----------------+------+-------+-----------+-------+

4. IO and GT Specific

40

+-----------------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------------------+------+-------+-----------+-------+
Bonded IOB	60	0	210	28.57
Bonded IPADs	0	0	2	0.00
PHY_CONTROL	0	0	6	0.00
PHASER_REF	0	0	6	0.00
OUT_FIFO	0	0	24	0.00
IN_FIFO	0	0	24	0.00
IDELAYCTRL	0	0	6	0.00
IBUFDS	0	0	202	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	24	0.00
PHASER_IN/PHASER_IN_PHY	0	0	24	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	300	0.00
IBUFDS_GTE2	0	0	4	0.00
ILOGIC	0	0	210	0.00
OLOGIC	0	0	210	0.00
+-----------------------------+------+-------+-----------+-------+

5. Clocking

+------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+------------+------+-------+-----------+-------+
BUFGCTRL	1	0	32	3.13
BUFIO	0	0	24	0.00
MMCME2_ADV	0	0	6	0.00
PLLE2_ADV	0	0	6	0.00
BUFMRCE	0	0	12	0.00
BUFHCE	0	0	96	0.00
BUFR	0	0	24	0.00
+------------+------+-------+-----------+-------+

6. Specific Feature

+-------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-------------+------+-------+-----------+-------+
BSCANE2	0	0	4	0.00
CAPTUREE2	0	0	1	0.00
DNA_PORT	0	0	1	0.00
EFUSE_USR	0	0	1	0.00
FRAME_ECCE2	0	0	1	0.00
ICAPE2	0	0	2	0.00
PCIE_2_1	0	0	1	0.00

41

| STARTUPE2 | 0 | 0 | 1 | 0.00 |
| XADC | 0 | 0 | 1 | 0.00 |
+-------------+------+-------+-----------+-------+

7. Primitives

+----------+------+---------------------+
| Ref Name | Used | Functional Category |
+----------+------+---------------------+
FDRE	210	Flop & Latch
OBUF	39	IO
IBUF	21	IO
FDCE	21	Flop & Latch
DSP48E1	12	Block Arithmetic
LUT6	2	LUT
LUT3	2	LUT
LUT2	2	LUT
LUT5	1	LUT
LUT4	1	LUT
LUT1	1	LUT
BUFG	1	Clock
+----------+------+---------------------+

8. Black Boxes

+----------+------+
| Ref Name | Used |
+----------+------+

9. Instantiated Netlists

+----------+------+
| Ref Name | Used |
+----------+------+

Figure 27. Utilization Report for The Design

42

CONCLUSION

The optimized outputs from ACO are obtained. The gaussian distribution equation is

converted into behavioral modelling of Verilog. These are the required coefficients given as

an input for the Verilog code in behavioral modelling. Along with these obtained coefficients

the FIR FILTER code is written in Verilog using Xilinx Vivado software. And this is

convolved with the FIR code, which improved the effectiveness, decreased design error

(ACO) and speed up execution process (DE) while discharging their limitations.

Hence by passing the optimized outputs from ACO and by giving them as input to FIR filter

code in Verilog in behavioral modelling using Vivado software, we obtained an optimized

VLSI ARCHITECTURE FOR FIR FILTER USING ANT COLONY OPTIMIZATION.

43

APPENDIX

A. OVERVIEW OF DIGITAL SYSTEM DESIGN AND VLSI

ARCHITECTURE

EVOLUTION OF COMPUTER SYSTEM DESIGN
 Digital circuit design has evolved rapidly over the last 25 years. The earliest

digital circuits were designed with vacuum tubes and transistors. Integrated circuits were

then invented where logic gates were placed on a single chip. The first integrated

circuit(IC) chips were SSI (Small Scale Integration) chips where the gate count was very

small.

 As technologies become sophisticated, designers were able to place circuits with

hundreds of gates on a chip. These chips were called MSI (Medium Scale Integration)

chips. With the advent of LSI (Large Scale Integration), designers could put thousands of

gates on a single chip. At this point, design processes started getting very complicated,

and designers felt need to automate these processes. Computer Aided Design (CAD)

techniques began to evolve. Chips designers began to use circuit and logic simulation

techniques to verify the functionality of building blocks of the order of about 100

transistors. The circuits were still tested on the breadboard, and the layout was done on

paper by hand on a graphic computer terminal.

 With the advent of VLSI (Very Large Scale Integration) technology, designers

could design single chips with more than 100,000 transistors. Because of the complexity

of these circuits, it was not possible to verify these circuits on the breadboard. Computer-

aided technologies became critical for verification and design of VLSI digital circuits.

Computer programs to do automatic placement and routing of circuit layouts also

became popular. The designers were now building gate-level digital circuits manually on

graphic terminals. They would build small building blocks and then derive higher-level

blocks from them. This process would continue until they had built the top-level block.

Logic simulators came into existence to verify the functionality of these circuits before

they were fabricated on chip.

44

DESIGN SPECIFICATION
 Digital design flow begins with specification of the design at various level of

abstraction. It describes the functionality, interface and overall architecture of digital

circuits to be designed. The design specifications generally presented as a document

describing a set of functionalities that the final solution will have to provide and set

constraints that it must satisfy. At this point, architects do not need to think about how

they will implement the circuit.

BEHAVIOUR DESCRIPTION
 In this process, circuit details and electronic components are not specified.

Instead, the behavior of each block at the highest level of abstraction is modeling. The

behavioural approach to modeling hardware components is different from circuit design

in that it does not necessarily reflect hoe the design is implemented. It is basically an

algorithmic and black box approach to modeling. It accurately models what happens on

the inputs and outputs of the box. For example, if you wish to simulate the operation of

your custom design connected to a commercial part like a microprocessor. In this case,

the microprocessor is complex and its internal operation is irrelevant (only the external

behavior is important). Behaviour descriptions are important as they corroborate the

integrity of design idea.

BEHAVIOUR DESCRIPTION TO RTL
 The designer starts with an abstract description of the circuit called the

behavioural model. This kind of description is used primarily to verify the methodology

and functioning of the circuit. The next step is to transform this description something

closer to electronic circuitry. In other words, the behavioural description needs to be

converted to RTL (Registered transfer language) a functional or RTL description

describes a circuit in terms of its registers and the combinational logic between the

registers. This behavior synthesis can either be done manually or automatically by

software, The essential goal of doing this is to use logic synthesizers that makes this

form of description and synthesizes it to sets of registers and combinational logic, which

can be readily shipped to FPGA.

45

FUNCTIONAL VERIFICATION AND TESTING
 With the RTL design, the functional design of our digital system ends and its

verification begins. From this point onward, the design process is done with the

assistance of CAD tools. The underlying motivation is to remove all possible design

errors before proceeding to the expensive chip manufacturing. Verification methodology

still lacks any standard or even commonly accepted approach. The industrial approach to

verification is functional validation. The functional model of the design is simulated

with meaningful input stimuli and the output is checked for expected behavior. This

model used for simulation is the RTL.

VLSI ARCHITECTURE

 Very-large-scale integration (VLSI) is the process of creating an Integrated Circuit (IC)

by combining thousands of transistors into a single chip. VLSI began in the 1970s when

complex semiconductor and communication technologies were being developed.

The microprocessor is a VLSI device.

Before the introduction of VLSI technology, most ICs had a limited set of functions they could

perform. An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI

lets IC designers add all of these into one chip.

The electronics industry has achieved a phenomenal growth over the last few decades, mainly

due to the rapid advances in large scale integration technologies and system design applications.

With the advent of very large scale integration (VLSI) designs, the number of applications of

integrated circuits (ICs) in high-performance computing, controls, telecommunications, image

and video processing, and consumer electronics has been rising at a very fast pace.

The current cutting-edge technologies such as high resolution and low bit-rate video and

cellular communications provide the end-users a marvelous amount of applications, processing

power and portability. This trend is expected to grow rapidly, with very important implications

on VLSI design and systems design.

VLSI DESIGN FLOW

 The VLSI IC circuits design flow is shown in the figure below. The various levels of

design are numbered and the blocks show processes in the design flow.

46

Specifications comes first, they describe abstractly, the functionality, interface, and the

architecture of the digital IC circuit to be designed.

Behavioral description is then created to analyze the design in terms of functionality,

performance, compliance to given standards, and other specifications.

RTL description is done using HDLs. This RTL description is simulated to test functionality.

From here onwards we need the help of EDA tools.

RTL description is then converted to a gate-level netlist using logic synthesis tools. A gatelevel

netlist is a description of the circuit in terms of gates and connections between them, which are

made in such a way that they meet the timing, power and area specifications.

Finally, a physical layout is made, which will be verified and then sent to fabrication.

Figure 28. VLSI Design Flow

47

B. INTRODUCTION TO VERILOG

INTRODUCTION
 Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used

to model electronic systems. It is most commonly used in design and verification of

digital circuits at the regular -transfer level of abstraction. It is also used in verification of

analog circuits and mixed signal circuits HDL’s allows the design to be simulated earlier

in the design circuits in order to correct errors or experiments with different

architectures.

 Designs described in HDL are technology independent, easy to design and debug,

and are usually more readable than schematics, particularly for large circuits. Verilog can

be used to describe designs at four levels if abstractions:

1) Algorithmic level (much like as code if, case and loop statements).

2) Register transfer level (RTL uses registers connected by Boolean equations)

3) Gate level (interconnected AND, NOR etc.).

4) Switch level (the switches are MOS transistors inside gates).

A Verilog design consists of a hierarchy of modules. Modules encapsulate design

hierarchy, and communicate with other modules through a set of declared input, output

and bidirectional ports.

Internally, a module can contain any combination of the following: net/variable

declarations (wire, reg, integer, etc.), concurrent and sequential statement blocks, and

instances of other modules (sub-hierarchies).

FEATURES OF VERILOG HDL

Verilog HDL offers many useful features for hardware design

 Verilog (verify logic) HDL is general purpose hardware description language that is easy

to learn and easy to use. It is similar in syntax to C programming language. Designers

with C programming experience will find it easy to learn Verilog HDL.

 Verilog HDL allows different levels of abstraction to be mixed in the same model. Thus a

designer can define a hardware model in terms of switches, gates, RTL, or behaviour

48

code. Also a designer needs to learn only one language for stimulus and hierarchical

designs.

 Most popular logic synthesis tools support Verilog HDL. This makes it the language of

choice for designers.

 All fabrication vendors provide Verilog HDL libraries for post logic synthesis simulation.

Thus designing a chip in Verilog HDL allows the widest choice of vendors.

 The Programming language interface (PLI) is a powerful feature that allows the user to

custom C code to interact with the internal data structures of Verilog. Designers can

customize a Verilog HDL simulator to their need with the Programming language

interface (PLI).

MODULE DECLARATION

A module is the principal design entity in Verilog. The first line of a module declaration

specifies the name and port list (arguments). The next few lines specifies the I/O type

(input, output or inout) and width of each port. The default port with is 1 bit. Then the

port variables must be declared wire, reg. The default is wire. Typically inputs are wire

since their data is latched outside the module. Outputs are type regif their signals were

stored inside always or initial block.

Syntax
module model_ name(port_list);

input[msb:lsb] input_port_list;

output[msb:lsb] output_port_list;

inout[msb:lsb] inout_port_list;

 …….statements…………

endmodule

Example
module add_sub(add, in1, in2, oot);

inputadd;//defaults to wire

input[7:0] in1, in2, wire in1, in2;

49

Output[7:0] oot;

regoot;

 ………statements……..

Endmodule

VERILOG MODELLING
Verilog has four levels of modelling:

1) The switch level Modeling.

2) Gate- level Modeling.

3) The Data-Flow level.

4) The behavioural or procedural level.

Switch level Modeling:
 A circuit is defined by explicity showing how to constrct it using transistors like

pmos and nmos, predefined modules.

Example
 module inverter (out,in);

 output out;

 input in;

 Supply0gnd;

 Supply1vdd;

 nmosx1(out, in, gnd);

 pmosx2(out, in, vdd);

 endmodule

Gate level modelling

 A circuit is defined by explicitly showing how to correct it using logic gates.

Predefined modules, and the connections between them. In this first we think of our

circuit as a box or module which is encapsulated from its outer environment, in such a

way that its only communication with the outer environment, is through input and output

ports. We then set out to describe structure within the module by explicitly describing its

gates and sub modules, and how they connect with one another as well as to the module

50

ports.In other words, structural modelling is used to draw a schematic diagram for the

circuit. As an example, consider the full-adder below.

Example

 module fulladder (a, b, sum, Cout);

 input a, b;

 output sum, Cout;

 xor x1(a, b, y);

 xor x2(a, b, y);

 endmodule

Data-flow modelling

 Dataflow modeling uses Boolean expressions and operators. In this we use assign

statement.

Example

 module fulladder (a, b, sum, Cout);

 input a, b;

 output sum, Cout;

 assign sum=a^b;

 assign Cout=a^b;

 endmodule

Behavioural modeling

It is higher level of modeling where behaviour of logic is modelled. Verilog behavioural

Code is inside procedure blocks, but there is an exception:some behavioural code also

exist outside procedure blocks. There are two types of procedural blocks in Verilog .

Initial: initial blocks execute only once at time zero (start execution at time zero)
Always: always blocks loop to execute over and over again; in other words, as other

words as the name suggests, it executes always.

 An always statement executes repeatedly, it starts and its execution at other 0 ns
 Syntax: always@ (sensitivity list)
 Begin
 Procedural statements
 end

51

Example
 module fulladder (a, b, clk, sum);
 input a, b, clk;
 output sum;
 always@ (posedgeclk)
 begin
 sum= a+b;
 endmodule

SOFTWARE DESIGN AND DEVELOPMENT
 A description of the hardware's structure and behaviour is written in a high-level

hardware description language (usually VHDL or Verilog) and those codes is then

compiled and downloaded prior to execution. Although schematic capture can be used

for design entry but due to more complex designs and the improvement of the language-

based tools it has become less popular.

 The most distinct difference between hardware and software design is the way a

developer must think about the problem. Software developers tend to think sequentially,

even when they are tasked to program a multithread application. Most of the time, the

source code is always executed in that order. At the design entry phase, hardware

designers must think and program in parallel.

 All of the input signals are processed in parallel: inside each ore is a series of macro

cells and interconnections routed toward their destination output signals. Therefore, the

statement of a hardware description language creates structures, all of which are process

at the very same time. (Normally the link between each macro cell to another macro cell

usually -synchronized to some other signal, like a common clock).

 In a typical design, after each design entry is completed, the next step is to perform

periods of functional simulation. This is where a simulator comes in place. It is used to

execute the design and confirm that the correct/required outputs are produced for a given

set of test inputs.

 This step is to ensure the designer that his/her logic is functionally correct before

going on to the next stage development. This is a good practice as compared to

simulating a full-scale design entry. As the design entry gets more complex, the

troubleshooting will be much difficult and time consuming.

52

SOFTWARE TOOLS USED

XILINX VIVADO

MATLAB

VIVADO enables developers to synthesize their designs, perform timing analysis

examine RTL diagrams, simulate a design's reaction to different stimuli, and configure

the target device with the programmer. Vivado is a design environment for FPGA

products from Xilinx, and is tightly-coupled to the architecture of such chips, and cannot

be used with FPGA products from other vendors.

MATLAB is used for proof of concept.

LANGUAGE SUPPORT
The Vivado High-Level Synthesis compiler enables C, C++ and SystemC programs to be

directly targeted into Xilinx devices without the need to manually create RTL. Vivado

HLS is widely reviewed to increase developer productivity, and is confirmed to support

C++ classes, templates, functions and operator overloading.

 Xilinx vivado enables simulation, verification and synthesis for the following languages

VHDL

Verilog

System Verilog

53

C. XILINX VIVADO

XILINX VIVADO ISE DESIGN SUITE (16.1version)

 Xilinx is a powerful software tool that is used to design, synthesize,

simulate, test and verify digital circuit designs. The designer can describe the digital

design by either using the schematic entry tool or a hardware description language. In

this software we will create VHDL design input files – the hardware description of the

logic circuit, compile VHDL source files, create a test bench and simulate the design to

make sure of the correct operation of the design (functional simulation). The purpose of

this is to give new users an exposure to the basic and necessary steps to implement and

examine your own designs using ISE environment. In this, we will design one simple

module (OR gate); however, in the future, you will be designing such modules and

completing the overall circuit design from these existing files. A VHDL input file in the

Xilinx environment consists of: Entity Declarations: module name and interface

specifications (I/O) – list of input and output ports; their mode, which is direction of data

flow; and data type. Architecture: defines a component’s logic operation.

 There are different styles for the architecture body: (i)Behavioural – set of sequential

assignment statements (ii) Data Flow – set of concurrent assignments o Structural – set

of interconnected components A combination of these could be used, but in this tutorial

we will use Dataflow. In its simplest form, the architectural body will take the following

format, regardless of the style: architecture architecture_name of entity_name is begin …

-- statement end architecture_name;

 ISE (Integrated Software Environment) is a software tool produced by Xilinx for

synthesis and analysis of HDL designs, enabling the developer to synthesize (“compile”)

their designs, perform timing analysis, examine RTL diagrams, simulate a design’s

reaction to different simuli, and configure the target device with the programmer.

Xilinx is an American technology company, primarily a supplier of

programmable logic devices. It is known for inventing FPGA.

The Xilinx ISE is primarily used for circuit synthesis and design, while the

Modelsim logic simulator is used for system-level testing.

54

ISE PROJECT NAVIGATOR
In this section, we introduce the reader to the main components of an “ISE

Project Navigator” window, which allows us to manage our design files and move our

design process from creation to synthesis and to simulation phase.

Figure 29. Xilinx Vivado Project Navigation Window

By opening the Xilinx vivado ISE suite, we will come to see the 3 main points. They are

1) Quick start

2) Tasks

3) Information Center

 In the Quick start block, We have create a new project, open project and open

example project.

 In the Tasks, We have Manage IP, open hardware manager, xilinx Td store.

 In the Information center, we have documentation and tutorials,quick take videos

and release notes guide.

This section describes the four basic steps to working with a project.

Step 1––– Creating a New Project

This creates .xpr file and a working library.

Step 2––– Adding Items to the project

Projects can reference or include source files, folders for organizations, simulations, and

any other files you want to associate with the project. You can copy files into the project

directory or simply create mappings to files in other locations.

55

Step 3––– Compiling the Files

This checks syntax and semantics and creates the pseudo machine code that Viavdo uses

for simulation.

Step 4––– Simulating a Design

This specifies the design unit you want to simulate and opens a structure tab in the

workspace pane.

you specify will be used to create a working library subdirectory within the Project

In order to start ISE double click the desktop icon: Or click:

Creating a New Project

After launching Vivado, from the startup page click the “Create New Project”

icon. Alternatively, you can select File -> New Project

Figure 30. Creating New Project Window

The New Project wizard will launch, click the “Next >” button to proceed

Figure 31. Guiding Wizard of the Project

56

Enter a project name and select a project location. Make certain there are NO

SPACES in either! It’s not a bad idea to only use letters, numbers, and underscores as well. If

necessary simply create a new directory for your Xilinx Vivado projects in your root drive (e.g.

C:\Vivado). You will likely always want to select the “Create project sub-directory” check-box

as well. This keeps things neatly organized with a directory for each project and helps avoid

problems. Click the “Next >” button to proceed.

Figure 32. Creating a Project Name

Select the “RTL Project” radial and select the “Do not specify sources at this

time” check-box. If you don’t select the check-box the wizard will take you through

some additional steps to optionally add pre existing items such as VHDL or Verilog

source files, Vivado IP blocks, and .XDC constraint files for device pin and timing

configuration. For this first project you will add the necessary items later. Click the

“Next >” button to proceed.

Figure 33. Specifying the RTL project

57

You need to filter down to and select the specific part number for your project. You can

physically read the markings on your chip or refer to your board’s documentation to find its part

number. In the case of the Basys 3 it’s the Artix-7 chip that’s on the board, and the filters shown

will help you get to the correct device that’s highlighted. Once you select the correct device

click the “Next >” button to proceed.

Figure 34. Choosing a Board for The Project

Click the “Finish” button and Vivado will proceed to create your project as specified.

Figure 35. Project Summary

STEPS FOR DESIGN ENTRY

Working through the Basic Project Flow

The Vivado project window contains a lot of information, and the information displayed

can change depending on what part of the design you currently have open as you work through

58

the steps of your project. Keep this in mind as you work through this guide, because if you don’t

see a specific sub-window or sub-window tab it’s possible you aren’t in the correct part of the

design.

The “Flow Navigator” on the left side of the screen has all the major project phases organized

from top to bottom in their natural chronological order. You begin in the “Project Manager”

portion of the flow and the header at the top of the screen next to the Flow Navigator reflects

this. This header and the corresponding highlighted section in the Flow Navigator will tell you

which phase of the design you have open.

Figure 36. Main Window for The Project

Project Manager

Project Settings:

Begin by clicking on “Project Settings” under the Project Manager phase of the Flow

Navigator

Figure 37. Project Settings Window

59

There are a lot of settings available here for all phases of the project flow, but for now just select

“System Verilog” from the drop-down for the “Target language” in the “General” project

settings and click the “OK” button.

Add Sources:

Now click on “Add Sources” under the Project Manager phase of the Flow Navigator

Figure 38. Adding Source Files

Select the “Add or create design sources” radial and then click the “Next >” button

Figure 39. Wizard That Shows the Design Rules

60

Click the “Create File” button or click the green “+” symbol in the upper left corner and select

the “Create File…” option

Figure 40. Creating New Name for New Design

Make sure the options shown are selected in the “Create Source File” popup, and for the sake of

following along enter “convolution(Gaussian filter)” for the “File name”. Click the “OK” button

when finished.

You can normally enter anything you like for the “File name” as long as it’s valid, but always

make certain there are NO SPACES!

Figure 41. Selecting The Type of File And Location

61

Click the “Finish” button and Vivado will then bring up the “Define Module” window.

Define Module:

You can use the “Define Module” window to automatically write some of the VHDL code for

you. Additional “I/O Port Definitions” can be added by either clicking the green “+” symbol in

the upper left or by simply clicking on the next empty line. The “Entity name” and “Architecture

name” will be the corresponding Verilog HDL identifiers used in the code, as will whatever is

typed in for each “Port Name”. Any valid verilog HDL identifier can be used for any of these,

but for the sake of following along enter the information as shown. Make sure the proper

“Direction” is set for each. Click the “OK” button when finished.

Note that if you would rather write your own code from scratch you can simply click the

“Cancel” button and Vivado will create a completely blank System verilog VHDL source file

inside your project. If you click the “OK” button without defining any “I/O Port Definitions”

Vivado will still write the basic Verilog HDL code structure but the port definition will be empty

and commented out for you to uncomment and fill later.

Also note that the port names here match the silkscreen reference designators of the switches and

LEDs on the Basys 3 board that will be utilized for the example. This is for the convenience of

those following along with the Basys 3, but should not be inferred as a requirement by beginners;

each name is simply an arbitrary identifier.

Figure 42. Module Defining with Ports

62

The System Verilog HDL source file generated will be added to your project in the

“Design Sources” folder as shown. Double click it and it will open up in a new tab for

you to view/edit. All the code here was generated by the previous “Define Module”

window, and for this example you only need to manually enter the three highlighted lines

between the “begin” and “end” keywords.

If we want to create a simulation source, we have to select a new simulation source by

right clicking the add source block in the panel.

Figure 43. Creating the Simulation Source

63

REFERENCES

1. Tintu mary john, Chacko, Shanty (2020) , “ Efficient VLSI Architecture For FIR

FILTER Design Using Modified Differential Evolution Ant Colony Optimization

Algorithm” Emerald publications.

2. Kumar, N.R. (2018), “A review of low-power VLSI technology developments”,

Innovations in Electronics and Communication Engineering, Springer, pp. 17-27.

3. Kaur, S. Singh, B. and Singh, M. (2016), “Different design approaches for the

optimization of FIR filter coefficients”, International Journal of Engineering

Research & Technology (IJERT), Vol. 1 No. 7.

4. Rani, T. and Bansal, P. (2017), “Applications and variants of ant colony

optimization in design of digital filters: a review”, International Journal of

Electronics, Electrical and Computational System.

5. Xu et al. (2011) proposed an empirical approach depending on ACO for the design of

multiplier-less FIR filters with signedpower-of-two (SPT) coefficient. The number of

adders needed for filtering with constant SPT coefficients can be reduced by minimizing

non-zero SPT, through gathering the essential specifications of the filter.

6. Sasahara and Suyama (2017) studied design of FIR filters with CSD coefficients using

ACO technique.

7. Chattopadhyay et al. (2014) proposed DE-optimized filter as a pulse-shaping filter in a

Quadrature Phase Shift Keying modulated system.

8. Pusegaonkar et al. (2014) implemented low power digit-serial FIR filters using Multiple

Constant Multiplication techniques.

9. Aggarwal et al. (2013) implemented the FIR filter using Simulink and FPGA which

increases the speed of operation by its parallel processing capability.

10. Kaur et al. (2016) discussed the designing approaches for linear phase FIR filter. They

also compared the existing systems in terms of maximum stop band ripple, maximum

pass band ripple, transition width, and maximum stop band attenuation.

64

PUBLICATION

1. N.Pujitha Vaidya, Ch.Rohit, Ch.Phani, Y.Sarvendra and Srinivas Sabbavarapu,
”ACO Based FIR Filter Implementation on FPGA”, Manuscript submitted to
Intelligent Systems with Applications (ISWA).

