ACO Based FIR Filter Implementation on FPGA

A Project report submitted in partial fulfillment of the requirements for
the award of the degree of

BACHELOR OF TECHNOLOGY
IN
ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

Ch. Rohit (318126512127) N. Pujitha Vaidya (318126512161)
Ch. Phani (318126512128) Y. Sarvendra (318126512179)

Under the guidance of
Dr.S. Srinivas

Associate Professor

P i
A ot
TCnanaMm BRF

ANITS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES
(UGC AUTONOMOUS)
(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘B+’ Grade)
Sangivalasa, Bheemili mandal, Visakhapatnam dist. (A.P)
2021-2022

i

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Dr.S.Srinivas,
Associate Professor, Department of Electronics and Communication Engineering,
ANITS, for his guidance with unsurpassed knowledge and immense encouragement. We
are grateful to Dr. V. Rajya Lakshmi, Head of the Department, Electronics and
Communication Engineering, for providing us with the required facilities for the
completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa,
for their encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions
during reviews helped us in accomplishment of our project. We would like to thank all
non-teaching staff of the Department of ECE, ANITS for providing great assistance in
accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement
throughout our project period. Finally we thank everyone for supporting us directly or

indirectly in completing this project successfully.

PROJECT STUDENTS:

Ch. Rohit (318126512127),
N.Pujitha Vaidya (318126512161),
Ch. Phani (318126512128),

Y. Sarvendra (318126512179)

il

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(UGC AUTONOMOUS)
(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC with ‘B+’ Grade)
Sangivalasa, Bheemili Mandal, Visakhapatnam dist.(A.P)

Moy anam BRA

ANITS

CERTIFICATE

This is to certify that the project report entitled “ACO Based FIR Filter
Implementation on FPGA” Submitted by Ch. Rohit (318126512127), N. Pujitha
Vaidya (318126512161), Ch. Phani (318126512128), Y. Sarvendra (318126512179)
in partial fulfillment of the requirements for the award of the Degree of Bachelor of
Technology in Electronics & Communication Engineering of Andhra University,
Visakhapatnam is. a record of bonafide work carried out under my guidance and

supervision.
'

ject Guide Head ofthe Department
Dr. S. Srinivas Dr. V. Rajya Lakshmi
Associate Professor Professor & Head of the Department
Department of E.C.E Department of E.C.E
ANITS ANITS

Associate Professor Head of the Department

Department of E.C.E. Department of EC E

Anil Neerukonda anll Neerukonda Institute of Technology & Sciences

Institute of Technology & Sciences Sangivalasa-531 162

Sangivalasa, Visakhapatnam-531 162

CONTENTS

ABSTRACT
LIST OF FIGURES
LIST OF EQUATIONS

CHAPTER 1 - INTRODUCTION
1.1 INTRODUCTION ...ttt ettt ettt ettt st ettt st et st eb e st e seeebeesre et e naeennes 1
1.2 BACKGROUND WORKooiiiiiiiiit ettt sttt st e sre e eenes 2

CHAPTER 2 - INTRODUCTION TO FIR FILTERS

2.1 INTRODUCTION ...ttt ettt ettt ettt b ettt ebe bbbt ebe b ees 3
22 FIR FILTER ..ottt ettt ettt 3
23 TR FILTER .ttt ettt ettt bbbttt 4
2.4 FIR AND IR COMPARISONoouiitiriiiiieiietint ettt ettt 4
2.5 DEFINITION OF FIR FILTERcooiiititiiieeieeet ettt st 4
2.6 FIR PROPERTIESottt ettt 5
RequIre 110 fEEADACKooviiiiieiiciieeeee e ettt ettt see e re e 5
INNETENT STADIIILY ...eeuviieiieie ettt ettt et ettt e e e st e e e saa e e seeeeseesseessaesseenseasseeseanses 6
PRhase ISSUEc..couiiiiiiiee ettt s et et 6
2.7 FIR APPLICATIONS ...ttt ettt ettt 6
Spatial BeamMTOTMINGcoccviiiiiriiiie ettt ettt ee s e sseeesaeesssaesasaessseeenseeenseesnssesnsnes 6
Linear Predictive COInNgocueeiieiiiiieiiee ettt ettt et e e teseaesnee e e saeeens 7
Linear INteTPOLAtIONoecuieiiieiieiiee et ettt ettt et e et e e e et e et e eeeeentesaeeeneeeneeeneesaeennes 7
SPEECH ANALYSIS ...ueeieiieiieie ettt ettt e e et et e et eeaeesae e e st e s s te st e see et e st eseeseeeseeneennean 7
N o TeTeTod d LY, (o [T 1 32V RO 7
Multi rate SIZNAl PTOCESSITIE ...uveerireieeiieeiieieeeteete et eetie et e ette st e seeee e e seeesteseeanseesseesseenseenseenseenseannes 7
AVETAZING FIILETeoiiiei ettt e e et ee st st et e st et e seaesnaeseeennee e 7
2.8 ADVANTAGES OF FIR FILTERScouiiiiiiiiiieei e s 7
2.9 DISADVANTAGES OF FIR FILTERS. ..ottt 8

CHAPTER 3 - MODIFIED DIFFERENTIAL EVOLUTION ANT COLONY
OPTIMIZATION ALGORITHM

3.1 INTRODUCGTION ...cuiiiiiiiiiiiiietteteete ettt ettt ettt sttt st st st s sae s aeesaeeastesaeesbeenae 9
3.2 WORKING OF ACO......iiiiiiiiiiiiinteeieet ettt ettt ettt ettt st s st sbee st e sreeseesanenseesaeenn 10

v

3.3 ALGORITHM AND FORMULAcociiiiiiiiit ittt sttt sttt eesreens 12

IMUTATION .ottt ettt ettt st st sttt st st sbe e sbe e saeesbeesbe e beenbeenaaens 12
CROSSOVER ..ottt ettt ettt et ettt st sttt sttt satesaaesane s 12
SELECTION ...ttt ettt st ettt st saesaeea 12
3.4 PSEUDO CODE FOR DE-ACO ALGORITHMc.cocciiiiiiiiiiieiieiic et 14
3.5 APPLICATIONS ...ttt ettt ettt ettt sttt st s bt sbe et be e eb e naeesreens 15

CHAPTER 4 - FIR FILTER USING DE-ACO ALGORITHM

4.1 DESIGN OF FINITE IMPULSE RESPONSE FILTER........cccevtiitininiiiiienenececicneeeeecene 16
4.2 FILTER OPTIMIZATION TECHNIQUEScooiiiiiiiiieceee ettt 19
USING A DIFFERENTIAL EVOLUTIONARY ALGORITHM.....ccccccvoiiiininiiiiiciceceecns 19
FaNLY (17N Te) 1 10) 7S] 15 10 4 TP 19
B. CrOSSOVET OPETATION.eeiietietieieetieie et ie et et e et et e e eateenseesaeenteeeeeaseeneeenseenseenseenseeeeennens 20
C. SEleCtion OPETATION ..ccuveeuiieieeiieiieeteeieeete et ee e et e e te et e e teeteesseetessseenseseeesseesneessaeaneesssenneesseans 20
CONTROL PARAMETERS OF DE ALGORITHMccccciiiiiiiiiiiiieicenieeseeeceeeae 21
USING ANT COLONY OPTIMIZATION ALGORITHM......ccccocinimiiiiinininicecineneceeee 22
4.3. DIFFERENTIAL EVOLUTION-ANT COLONY OPTIMIZATION ALGORITHMS 22
4.4 DE-ACO-BASED FIR FILTER DESIGN......ccccociiiiiiiiiiiiieiiccieie e 23
4.5 ADVANTAGES OF DE-ACO ALGORITHMcccooiiiiiiiiiiiiiiiiiiteeeeeee e 24
4.6 FIR FILTER DESIGNooiiiiiiiiiiiiiie ettt s 24
4.7 LOGIC OF THE FIR MODULEcciiiiiiiiiiiiiiiiteee ettt 26
CHAPTER 5 - RESULTS
5.1 SIMULATED RESULTS FROM MATLAB FOR ACO....c..cccccvimimiiiininineieieceeseeeeee 31
SIMULATED RESULTS FROM MATLAB FOR FIR FILTERcccccveoivininiiiinincicienns 32
COEFFICIENTS OBTAINED FROM FILTER DESIGNERccccociiiinininiieiincceciceeene 32
5.2 FIR FILTER OUTPUTS FROM VIVADO......cccooctiiiimiiiiiiiininieeseeteeeeee et 33
VIVADO SYNTHESIS REPORTooiiiiiiiiiiiiet et 37
UTILIZATION REPORT FOR THE DESIGNc.cccoiiiiiiiiiiiiiiiice et 38
CONCLUSION

APPENDIX

A.OVERVIEW OF DIGITAL SYSTEM DESIGN AND VLSI ARCHITECTURE..........ccceecu.. 43
1.LEVOLUTION OF COMPUTER SYSTEM DESIGNcccomiiierieiietieieieseeeeeeeeeeee e 43
2.DESIGN SPECIFICATIONciiitiitiiiirie ittt ettt st ettt ettt estenaesaesneeneensens 44
3. BEHAVIOUR DESCRIPTIONccoiiiiiieiieeieetieiiiietete sttt ste et esseses e eesaesseessenseseesneennensens 44
4. BEHAVIOUR DESCRIPTION TO RTL ...octiiiiieiesie ettt 44
5.FUNCTIONAL VERIFICATION AND TESTING.......ccteotiierieiereeeieiieiee et 45
6. VLST ARCHITECTURE ..ottt sttt sttt et eaesaeeneenaesaesne e 45
T.VLSTIDESIGN FLOW ..ottt ettt ettt st s teeae e st e e e ssesseessensensesneensansens 45

B.INTRODUCTION TO VERILOG ...cucoiiuiniisinnensenssessassasssisssssssssssssssssssssssassssssssssssssossssssssssssoses 47
L.INTRODUCGCTION ..ottt sttt sttt st esaesaessessaesse e ssesseensensesseeneensesseeseensensens 47
2.FEATURES OF VERILOG HDL.......c.coiiiteieieiiieeeeet ettt s 47
3.MODULE DECLARATIONootiittitiieteeteetete sttt sttt sttt sttt naeseesaee et 48
4.VERILOG MODELLING ...c.ucoittitiitieiinie sttt ettt sttt sttt sbe e essentesaesaeeneeneens 49

Gate 16Vel MOACIIINGcccviiiiiii ettt et ete et ae sttt esebeebesteesaesseessessseesseseesseans 49
Data-flow MOACIIINGeeviiiiiiieiieiecieee ettt ettt te et e esbe et e estessseesseeseessseessesnsensses 50
Behavioural MOAEINGccviriiiiiiie ettt et et esb e et e et b e seessessbesseeessesnnensses 50
5.SOFTWARE DESIGN AND DEVELOPMENTccociitiiiiiniiiereieiieeee et 51
6.SOFTWARE TOOLS USED.....ccoiiiitiiiiiieie ettt sttt ettt st sttt s ae e 52
XILINX VIVADO,MATLAB ..ottt sttt esse e nnas 52
T.LANGUAGE SUPPORT ..ottt ettt ettt se et e et sseeseessenseseeeneensansens 52
VHDL,Verilog,System VETIlOcoouiiiiieieeie ettt ettt ettt et eas e eeeteeneeeeeneens 52

C.XILINX VIVADO.. ceesstestesssatentstess st tents s bs Rt sRteRtsR RS Rt SRt et s bSO RsSRe SRS SRS SRS SR bR RS R b S S SR S0 R S S 53
1.XILINX VIVADO ISE DESIGN SUITE (16.1VeISI0N).....c.cccuerieieieiiiieiieieseeereeeieie e eeeeaneens 53
2.ISE PROJECT NAVIGATORcutiiiiiriieieees ettt ettt sttt s 54

Creating @ INEW PIOJECEuviiiiiiiieiieee ettt ettt se e et e et te e s teeessaessaeesseeentessanaensseens 55

3.STEPS FOR DESIGN ENTRYooiiiiiiiieiieeese ettt sttt 57

4. Working through the Basic Project FIOW.........cccooiiiiiiiiiiie e 57

PrOJECt IMANAGETeeeuiieie ettt ettt et e e et e e te et e es et e eaeeeneeseeesaesneessaeaneeessenneeseeans 58

PrOJECt SEELIMES: o.eeeie ettt ettt e sttt ettt et e e te et e ste et eenteenseen e enseenteeneeneenn 58

A SOUTCES: ...ttt ettt et et et et et e et e e et e st enteeateenseeaseessesnsesneeneesneesneenneans 59

DefiNe MOGUIE: ..ottt ettt ettt e eae et ste et e e steenseenseenseenteeneeneean 61

REFERENCES

PUBLICATIONS

Vi

ABSTRACT

In this modern era of rapid development, the usage of VERY LARGE-SCALE
INTEGRATION (VLSI) architecture is in high demand and because of this rapid
advancement in VLSI design posed a number of challenges. It is important to optimize
the usage of different design areas such as chip size, component separation, inter-
connected length. FIR filter can be designed by formulation of specifications which are
for a particular application requirement. In this project, an efficient FIR filter will be
designed using ANT COLONY OPTIMIZATION ALGORITHM. Also, an optimization
environment will be designed such that filter components are upgraded on the VLSI
design metrics such as area, speed or power and synthesizable code in Hardware
Description Language [HDL] will be generated.

PURPOSE: This project aims to concentrate on an efficient FIR filter architecture in
combination with the differential evolution ant colony algorithm (DE-ACO). For the
design of FIR filter, ACO is found to be very efficient because of its non-conventional,
nonlinear, multi-modal and non-differentiable nature. It converges to find the optimal
final solution.

APPROACH: FIR filters are extensively used for many low power, low complexities,
less area and high-speed digital signal processing applications since it can assure stability
and recognize linear phase characteristics. Ant Colony algorithms form a class of
proposed metaheuristics for solving difficult optimization problems.

KEYWORDS: VLSI DESIGN, DE-ACO, FIR FILTER, XILINX ISE,
METAHEURISTIC.

LIST OF FIGURES

FIGURE 1.FIR FILTER BLOCK DIAGRAM ... cttiiiiiiiiiitiiiiiicc ittt 5
FIGURE 2.ACO ALOGORITHM FINDING SHORTEST PATHoutiiiiiiiiiiiiciiii e 11
FIGURE 3.DIFFERENT STAGES OF ANT COLONY OPTIMIZATION ALGORITHM ...ccoviiiiiiiiiiiiiiiiiiin e 11
FIGURE 4.BASIC STRUCTURE OF FIR FILTERutiiiiiiiiiii ittt e 17
FIGURE 5.FREQUENCY RESPONSE OF LOW PASS FILTER ..cuvviiiiiiiiiiiiieeric it 17
FIGURE 6.FLOW CHART TO DESIGN FIR FILTER ...ttt e 18
FIGURE 7.FLOW CHART OF DE ALGORITHM ...uuiiiiiiiiiiiii it s 21
FIGURE 8.REGISTER TRANSFER LEVEL DESIGNouiiiiiiiiiiiiiiie ittt s s 24
FIGURE 9.15 TAP LOW PASS FIR FILTER COEFFICIENTS.....coiiiiiiiiiiiiiieeri et 25
FIGURE 10.SIGNED KEYWORD IN VERILOGuuiiiiiiiiiiiiicniiic it 25
FIGURE 11.CONVERSION OF FRACTIONAL VALUE TAPSTO HEX FORMccoiiiiiiiiiiiiiiiiic et 26
FIGURE 12.15 INPUT SAMPLES FOR 15 TAPS OF FILTER ..coiiiiiiiiiiiiiiiicctiii e 26
FIGURE 13.MULTIPLYING EACH INPUT SAMPLE WITH COEFFICIENT VALUEccocciiiiiiiiii s 27
FIGURE 14.0UTPUT DATA STREAM FROM THE FILTERcoiiiiiiiiiiiiiietie it 27
FIGURE 15.AXI STREAM TIMING DIAGRAMutiiiiiiiiiiii e 28
FIGURE 16.SETTING TEST BENCH ASTOP ...cooiiiiiiiiiici e s 28
FIGURE 17.LOGIC DESIGN FOR 15 TAP FIRMODULEoiiiiiiiiiiiii ittt 29
FIGURE 18.0PTIMIZED OUTPUTS FROM ANT COLONY OPTIMIZATIONcciiiiiiiiiiiiiiiiie e 31
FIGURE 19.FIR FILTER DESIGNER USING REQUIRED PARAMETERS.......coiiiiiiiiiiiiic it 32
FIGURE 20.COEFFICIENTS OBTAINED FROM FILTER DESIGNERcoiiiiiiiiiiiiiiiiiiii e 32
FIGURE 21.COEFFICIENTS OBTAINED FROM FILTER DESIGNER (HEX) ..c..eivetiieiientinie ettt 33
FIGURE 22.1.FIR FILTER OUTPUTS FROM VIVADOcociciiiiiiiiiiiiiie ittt st s s 33
FIGURE 22.2.FIR FILTER OUTPUTS FROM VIVADOcocciiiiiiiiiiiiiie ittt s e s s s 34
FIGURE 22.3.FIR FILTER OUTPUTS FROM VIVADO......coiiiiiiiiiiiiiii it s 34
FIGURE 23.1.SCHEMATIC DIAGRAM FOR FIR FILTER ...eriiiiiiiiiiiiiin it 35
FIGURE 23.2.SCHEMATIC DIAGRAM FOR FIR FILTER ..uetviiiiiiiiciiiic it 35
FIGURE 24.1.IMPLEMENTED DESIGN ...ttt ittt s s ba e e 36
FIGURE 24.2.IMPLEMENTED DESIGN ...coiiiiiiiiiiii ittt e s 36
FIGURE 25.POWER UTILIZATION DETAILS ...cooiiiiiiiii ittt 37
FIGURE 26.VIVADO SYNTHESIS REPORT ..ottt s 38
FIGURE 27.UTILIZATION REPORT FOR THE DESIGNcutiiiiiiiiiiiiii ittt 41
FIGURE 28.VLSI DESIGN FLOWooiiiiiiiiiii ittt sttt s s ba e a e sann e e e sabae e e enns 46
FIGURE 29.XILINX VIVADO PROJECT NAVIGATOR WINDOWottt 54
FIGURE 30.CREATING NEW PROJECT WINDOWcuiiiiiiiiiiiiiiiiii it aa s 55
FIGURE 31.GUIDING WIZARD FOR THE PROJECToiiiiiiiiiiiie ittt s s 55
FIGURE 32.CREATING APROJECT NAIMEcoiiiiiiiiii ittt e e s s snbe e s nae e 56
FIGURE 33.SPECIFING THE RTL PROJECT ..ottt sttt s s s s sn e snae e 56
FIGURE 34.CHOOSING A BOARD FOR PROJECT ..ttt s e 57
FIGURE 35.PROJECT SUMMARY ..ottt st sttt eb e s e saaa e e s sab e s e asa e e snbe e e sabaaeeeans 57
FIGURE 36.MAIN WINDOW FOR THE PROJECT ...ttt s 58
FIGURE 37.PROJECT SETTINGS WINDOW ..ottt ettt st e s e snae s 58
FIGURE 38.ADDING THE SOURCE FILEScoiiiiiiiiiiiiiiii it 59
FIGURE 39.WIZARD THAT SHOWS TO THE DESIGN SOURCEocoiiiiiiiiiiiiiiin e 59
FIGURE 40.CREATING A NEW FILE NAME FOR NEW DESIGN SOURCEccovviiiiiiiiiiiiiiiciiiiic s 60
FIGURE 41.SELECTING THE TYPE OF FILE AND LOCATION ..ottt 60
FIGURE 42.MODULE DEFINING WITH PORTSoiiiiiiiiiii it 61

FIGURE 43.CREATING THE SIMULATION SOURCEcuuiiiiiiiiiiiiie ittt e s s e 62

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The Finite Impulse Response (FIR) filters are extensively used in digital signal
processing applications since it can assure stability and recognize linear phase
characteristics. The circuit scale tends to be large while implementing high order FIR
filter in hardware which increases the design cost and power consumption. The number
of digits involved without zero in each coefficient corresponds to multiple shifters in the
multiplier. Various heuristic methods have been recommended to solve this problem in
the equitable computation time and applied. Artificial bee colony (ABC) and particle
swarm optimization (PSO) are the approaches applied to a continuous optimization
problem. The difficulty of the existing technique is solved by using a useful ant colony
optimization (ACO) algorithm. ACO, genetic algorithm (GA), simulated annealing and
other heuristic methods are known to generate acceptable solutions within a possible
time. A combinatorial optimization problem has been solved by the proposed ACO, and
it has demonstrated excellent performance in comprehensive problems. The design of
high-order discrete coefficient FIR filters is a large-scale problem, and the application of
ACO can be very effective in solving the above problem. The Z-plane transfer function
of FIR filter with only zeros and linear phase described by is used to find out the
magnitude and frequency response. The FIR filter has N number of points, and its z-

transform is given in eq. (1):

N-1
H(z) = Z h(n)z™)
n=0

There is no feedback required for FIR filters. At present, ACO is widely used for various
optimization applications such as optimal design and scheduling problem of thermal units,
traveling salesman problem and quadratic assignment problem. This paper presents a novel

DEACO technique for optimizing power consumption. The research comprises of the

establishment of novel algorithm termed as DE-ACO which combines state of the art to the

power consumption and frequency domain specifications optimizing.
1.2 BACKGROUND WORK

Fir filters are stable, linear and easy to implement and hence they are widely used
in many consumer electronics and DSP applications. But, the main problem here is that
the FIR takes more time to execute and since there is no feedback it needs more number
of coefficients. For every extra coefficient there will be an extra memory requirement
and hence for a demanding system, the speed and memory requirements to implement an

FIR system can make the system unfeasible.

So, our project aimed to reduce the time of execution by minimizing the number of
coefficients needed. This can be done using ANT COLONY OPTIMIZATION technique
which reduces coefficients and gives only the required ones. So, our project aimed to

focus on designing some efficient reconfigurable FIR filter architectures.

CHAPTER 2

INTRODUCTION TO FIR FILTERS

2.1 INTRODUCTION

The digital filter is a discrete system, and it can do a series of mathematic processing to
the input signal, and therefore obtain the desired information from the input signal. The
transfer function for a linear, time-invariant, digital filter is expressed in eq. (2)

21]‘4:0 ij_1
1+ YN ja;z1

H(z) = (2)

where a; and bj are coefficients of the filter in Z-transform

There are many kinds of digital filters, and also many different ways to classify
them. According their function, the FIR filters can be classified into four categories,
which are lowpass filter, high pass filter, bandpass filter, and band stop filter.

According to the impulse response, there are usually two types of digital filters,
which are finite impulse response (FIR) filters and infinite impulse response (IIR) filters.

According to the formula above, if aj is always zero, then it is a FIR filter,
otherwise, if there is at least one none-zero a;, then it is an IIR filter. Usually, we need
three basic arithmetic units to design a digital filter, which are the adder, the delay, and
the multiplier.

The following are the steps to design a digital filter:

1. Make sure of the property of a digital filter according to the given requirements.
2 Use a discrete linear time-invariant system function to approach to the properties.
3. Make use of algorithms to design the system function.

4 Use a computer simulation or hardware to achieve it.

2.2 FIR FILTER

FIR filters are stable, linear and easy to implement and hence they are widely used
in many consumer electronics and DSP applications [8]. The finite impulse response
(FIR) filter is one of the most basic elements in a digital signal processing system, and it

can guarantee a strict linear phase frequency characteristic with any kind of amplitude

frequency characteristic. Besides, the unit impulse response is finite; therefore, FIR
filters are stable system. The FIR filter has a broad application in many fields, such as
telecommunication, image processing, and so on. The system function of FIR filter is

given by eq. (3):

L-1
H(z) = Z h[n]z~™ 3)
n=0
where L is the length of the filter, and h[n] is the impulse response.
2.3 1IR FILTER

The Infinite Impulse Response (IIR) filter is recu rsive structure, and it has afeedback loop. The

precision of amplitude frequency characteristic is very high, and IIR filters are not linear phase.

2.4 FIR AND IIR COMPARISON

(1) Under the same conditions as in the technical indicators, output of the IIR filter has
feedback to input, so it can meet the requirements better than FIR. The storage units are
less than those of IIR, the number of calculations is also less, and it’s more economical.
(2) The phase of FIR filter is strictly linear, while the IIR filter is not. The better the selectivity
of IIR filter is, the more serious the nonlinearity of the phase will be.
(3) The FIR filter is non-recursive structure, finite precision arithmetic error is very small.
While IIR filter is recursive structure, and parasitic oscillation may occur in theoperation
of IIR filter.
(4) Fast Fourier Transformation can be used in FIR filter, while IIR cannot.
(5)The IIR filter can use formulas, data and tables of the analog filter, andonly a small amount
of calculation. While FIR filter design may always make use of the computer to calculate,
and the order of FIR filter could be large to meet the design specifications.
2.5 DEFINITION OF FIR FILTER

In signal processing, a finite impulse response (FIR) filter from (figurel) is a filter
whose impulse response (or response to any finite length input) is of finite duration, because it
settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which

may have internal feedback and may continue to respond indefinitely (usually decaying).

The impulse response of an Nth-order discrete-time FIR filter (i.e., with a Kronecker delta
impulse input) lasts for N + 1 samples, and then settles to zero.

FIR filters can be discrete-time or continuous-time, and digital or analog.

x[n]

\
N
\
N
\J
N

P i
\/b. Yb, Yb_, b,

Figure 1: FIR Filter Block Diagram

A discrete-time FIR filter of order N. The top part is an N-stage delay line with N + 1 taps.
Each unit delay is a z—1 operator in the Z-transform notation. The output y of a linear time

invariant system is determined by convolving its input signal x with its impulse response

For a discrete-time FIR filter, the output is a weighted sum of the current and a finite number
of previous values of the input. The operation is described by the following equation, which

defines the output sequence y[n] in terms of its input sequence x[n] as in eq. (4):
y[n] = by x[n] + by x[n — 1]+ -+ by x[n — N] = YN, b; x[n — 1] (4)

Where, x[n] is the input signal, y[n] is the output signal, b(i) are the filter coefficients, also
known as tap weights, that make up the impulse response and N is the filter order; an th-order
filter has (N+I) terms on the right-hand side. The x(n-i) in these terms is commonly referred to
as taps, based on the structure of a tapped delay line that in many implementations or block
diagrams provides the delayed inputs to the multiplication operations. One may speak of a 5th

order/6-tap filter, for instance.

2.6 FIR PROPERTIES

An FIR filter has a number of useful properties which sometimes make it preferable to

an infinite impulse response (IIR) filter. FIR filters:

Require no feedback: This means that any rounding errors are not compounded by summed

iterations. The same relative error occurs in each.

Inherent stability: This is due to the fact that, because there is no required feedback, all the

poles are located at the origin and thus are located within the unit circle (the required

condition for stability in a Z transformed system).

Phase Issue: can easily be designed to be linear phase by making the coefficient sequence
symmetric; linear phase, or phase change proportional to frequency, corresponds to equal
delay at all frequencies. This property is sometimes desired for phase-sensitive applications,

for example data communications, crossover filters, and mastering.

The main disadvantage of FIR filters is that considerably more computation power in a

general purpose processor is required compared to an IIR filter with similar sharpness or
selectivity, especially when low frequency (relative to the sample rate) cutoffs are needed.
However, many digital signal processors provide specialized hardware features to make FIR
filters approximately as efficient as IIR for many applications.
2.7 FIR APPLICATIONS
FIR applications mainly involve in digital communications in the intermediate
frequency stages of the receiver. For instance, a digital radio receives and converts the
analog signal to the intermediate frequency and then converts it to digital using with a
digital to analog converter. Then uses the finite impulse response to choose the preferred
frequency. It is used in software radio, that permits easily adaptable filters with good

rejection and without changing hardware.

Spatial Beamforming:

It is a signal processing technique used in sensor arrays for directional signal transmission or
reception.[1] This is achieved by combining elements in an antenna array in such a way that
signals at particular angles experience constructive interference while others experience
destructive interference. Beamforming can be used at both the transmitting and receiving ends
in order to achieve spatial selectivity. The improvement compared with omnidirectional
reception/transmission is known as the directivity of the array. Beamforming can be used for
radio or sound waves. It has found numerous applications inradar, sonar, seismology, wireless
communications, radio astronomy, acoustics and biomedicine. Adaptive beamforming is used to
detect and estimate the signal of interest atthe output of a sensor array by means of optimal (e.g.

least-squares) spatial filtering and interference rejection.

Linear Predictive Coding

It is a method used mostly in audio signal processing and speech processing for
representing the spectral envelope of a digital signal of speech in compressed form, using
the information of a linear predictive model. It is one of the most powerful speech
analysis techniques, and one of the most useful methods for encoding good quality

speech at a low bit rate and provides highly accurate estimates of speech parameters.

Linear Interpolation

In mathematics, linear interpolation is a method of curve fitting using linear polynomials to

construct new data points within the range of a discrete set of known data points.

Speech Analysis

Speech analysis is the process of analyzing the speech signal to obtain relevant informationof

the signal in a more compact form than the speech signal itself.

Speech Modelling

Modeling is the process of utilizing your complete speech and language system to help your

child's developing speech and language system grow

Multi rate Signal processing

Iterate simply means “multiple sampling rates”. A multirate DSP system uses multiple sampling
rates within the system. Whenever a signal at one rate has to be used by a system that expects a

different rate, the rate has to be increased or decreased, and some processing isrequired to do so.

Averaging Filter

A Special implementation of a low pass algorithm is the averaging filter. It calculates the output
sample using the average from a finite number of input samples. The averaging filter is used in

situations where is necessary to smooth data that carrying high frequency distortion.

2.8 ADVANTAGES OF FIR FILTERS

FIR filter is always stable and simple. FIR filters have linear phase response. It is easy
to optimize and is Noncausal. Round of noise error is minimum. Both recursive, as well as

non-recursive filter, can be designed using FIR designing techniques.

For designing a filter having any arbitrary magnitude response, FIR designing techniques can
be easily applied and it gives good performance, robust in nature and the ease of
computational techniques for filter implementation. It has the requirement of large storage

and the incapability of linear phase response.

2.9 DISADVANTAGES OF FIR FILTERS

Require large storage requirements and cannot simulate prototype analog filter. For the
implementation of FIR filter complex computational techniques are required, it is hard to
implementation than IIR and is expensive due to large order, require more memory and a

time-consuming process.

CHAPTER 3

MODIFIED DIFFERENTIAL EVOLUTION ANT COLONY
OPTIMIZATION ALGORITHM

3.1 INTRODUCTION

The algorithmic world is beautiful with multifarious strategies and tools being
developed round the clock to render to the need for high-performance computing. In fact, when
algorithms are inspired by natural laws, interesting results are observed. Evolutionary
algorithms belong to such a class of algorithms. These algorithms are designed so as to mimic
certain behaviours as well as evolutionary traits of the human genome. Moreover, such
algorithmic design is not only constrained to humans but can be inspired by the natural
behaviour of certain animals as well. The basic aim of fabricating such methodologies is to
provide realistic, relevant and yet some low-cost solutions to problems that are hitherto

unsolvable by conventional means.

In computer science and operations research, the Ant Colony Optimization algorithm (ACO) is
a probabilistic technique for solving computational problems which can be reduced to finding
good paths through graphs. Artificial ants stand for multi-agent methods inspired by the
behaviour of real ants. The pheromone-based communication of biological ants is often the
predominant paradigm used. Combinations of artificial ants and local search algorithms have
become a method of choice for numerous optimization tasks involving some sort of graph,

e.g., vehicle routing and internet routing.

Different optimization techniques have thus evolved based on such evolutionary algorithms
and thereby opened up the domain of metaheuristics. Metaheuristic has been derived from
two Greek words, namely, Meta meaning one level above and heuriskein meaning to find.
Algorithms such as the Particle Swarm Optimization (PSO) and Ant Colony Optimization
(ACO) are examples of swarm intelligence and metaheuristics. The goal of swarm intelligence

is to design intelligent multi-agent systems by taking inspiration from the collective behaviour

of social insects such as ants, termites, bees, wasps, and other animal societies such as flocks

of birds or schools of fish.

In the natural world, ants of some species (initially) wander randomly, and upon finding food
return to their colony while laying down pheromone trails. If other ants find such a path, they are
likely not to keep travelling at random, but instead to follow the trail, returning and reinforcing it

if they eventually find food.

Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive strength.
The more time it takes for an ant to travel down the path and back again, the more time the
pheromones have to evaporate. A short path, by comparison, gets marched over more frequently,
and thus the pheromone density becomes higher on shorter paths than longer ones. Pheromone
evaporation also has the advantage of avoiding the convergence to a locally optimal solution. If
there were no evaporation at all, the paths chosen by the first ants would tend to be excessively
attractive to the following ones. In that case, the exploration of the solution space would be
constrained. The influence of pheromone evaporation in real ant systems is unclear, but it is very

important in artificial systems.

The overall result is that when one ant finds a good (i.e., short) path from the colony to a food

source, other ants are more likely to follow that path, and positive feedback eventually leads to

many ants following a single path. The idea of the ant colony algorithm is to mimic this behavior

with "simulated ants" walking around the graph representing the problem to solve.
3.2 WORKING OF ACO

Ant Colony Optimization technique is purely inspired from
the foraging behaviour of ant colonies, first introduced by Marco Dorigo in the 1990s.
Ants are eusocial insects that prefer community survival and sustaining rather than as
individual species. They communicate with each other using sound, touch and
pheromone. Pheromones are organic chemical compounds secreted by the ants that
trigger a social response in members of same species. These are chemicals capable of
acting like hormones outside the body of the secreting individual, to impact the
behaviour of the receiving individuals. Since most ants live on the ground, they use the

soil surface to leave pheromone trails that may be followed (smelled) by other ants.

10

o N

%
o

4
7 —

\\ \

%
/ \/

s
'Y

/\/

1 2 3 4

Figure 2: ACO Algorithm for Shortest Path

Ants live in community nests and the underlying principle of ACO is to observe the
movement of the ants from their nests in order to search for food in the shortest
possible path from (figure 2). Initially, ants start to move randomly in search of food
around their nests. This randomized search opens up multiple routes from the nest to
the food source. Now, based on the quality and quantity of the food, ants carry a
portion of the food back with necessary pheromone concentration on its return path.
Depending on these pheromone trials, the probability of selection of a specific path by
the following ants would be a guiding factor to the food source from (figure 3).
Evidently, this probability is based on the concentration as well as the rate of
evaporation of pheromone. It can also be observed that since the evaporation rate of
pheromone is also a deciding factor, the length of each path can easily be accounted
for.

Colony -Food Colony HE ood

Figure 3: Different Stages of Ant Colony Algorithm

Stage 1: All ants are in their nest. There is no pheromone content in the environment. (For

algorithmic design, residual pheromone amount can be considered without interfering with the

probability).

11

Stage 2: Ants begin their search with equal (0.5 each) probability along each path. Clearly, the
curved path is the longer and hence the time taken by ants to reach food source is greater than
the other.

Stage 3: The ants through the shorter path reaches food source earlier. Now, evidently they
face with a similar selection dilemma, but this time due to pheromone trail along the shorter
path already available, probability of selection is higher.

Stage 4: More ants return via the shorter path and subsequently the pheromone concentrations
also increase. Moreover, due to evaporation, the pheromone concentration in the longer path
reduces, decreasing the probability of selection of this path in further stages. Therefore, the
whole colony gradually uses the shorter path in higher probabilities. So, path optimization is

attained.
3.3 ALGORITHM AND FORMULA

The standard approach for solving an optimization problem is to design an objective
function which can replace the problem’s objectives while limited to its constraints. The DE
algorithm is a heuristic algorithm based on the population like GAs using the three operators;
Mutation, Crossover and Selection to optimize the cost function or detached function over the
successive generations.

DIFFERENTIAL EVOLUTIONARY algorithm is a heuristic algorithm which follows 3 steps
for solving an optimized problem.

MUTATION: Minimizes power consumption and reduces ripple errors of pass and stop band.
Due to which, ants select components according to previous phermone distribution and releases
pheromone on components they select.

CROSSOVER: New child is created by mutation of parents, which are selected in random,

bunch of 4 each time.

SELECTION: To select the shortest path which gives the required nodes.

As for the linear phase digital FIR filter design, the inputs of the algorithm are a group
of coefficients {h (0), h (1), ..., h (N - 1)}. Moreover, at the end of the optimization, only one
group with optimum fitness value will be obtained. In every generation, to produce a trial vector
each vector of the parent parameter is targeted for the crossover with a vector. The resultant trial

vector is called a child of the two parent vectors, and it will compete with the target vector in

12

the following steps. CR is the probability of crossover which the parameter values of fraction
controls and succeeded by the mutant. After mutation and crossover operations violate the
bounds; it is limited, and likewise the bounds are regulated. The child’s vectors are used to
calculate the objective function values.

ACO is used to calculate the shortest path between source and destination. The two
functions are mainly done by the ant that is in drift until finding the source of food (F) and then
back to the nest (N) depending on the pheromone trail on random. It is a chemical substance
that is released by ants when it goes into the search of food. Pheromone trails discover the
shortest path. Pheromones show in some path the common storage. It remains extremely
elementary. The optimum solutions from a finite number of solutions are calculated by
combinatorial optimization. It works on the domain of those optimization problems that have set
of appropriate solutions that will be discrete. Better results can be obtained for lesser
appropriate discrete solutions.

Compute probability P according to the probability equation using eq. (5):

1
Im _ T nk(l)
Pn,k) = tlin k() +10nk()+tink(1) ()
According to pheromone updation, the equation is eq. (6):
tn k(t + 1) = priin k(t) + T571 AT (E) + AT (0) (6)

The desired frequency domain specifications and power minimization are the dual
objectives to be considered while designing a filter. The proposed DE-ACO has a more
excellent performance with strong ability to find optimal solution and quick convergence speed.
The contribution of the present work is three-fold, firstly a novel optimization technique based
on the hybridization of a heuristic technique, i.e., ant colony algorithm and an Evolutionary
technique, i.e., DE algorithm is proposed, which conserves the individual advantages of both the
techniques, i.e., it improves the effectiveness; reduce the design error (ACO) and speeds up
execution process (DE), while discarding their limitations. The design of FIR filter is based on
the approach of optimization. It satisfies the dual objectives of minimizing power consumption
during implementation and reducing ripples in the stop band and pass band. In this approach,
ants in colony randomly select components according to previous pheromone distribution and
release pheromone on the components they select. The ants will eventually converge on a set of

components, thus completing the optimization. Secondly, a hybrid of DE and ACO gives a new

13

method of optimization called the DE-ACO. In DEACO, new offspring is created by the
mutation of the parent. In this work, gbest is taken as the parent. Gaussian distribution has been
considered. For mutation, four particles are chosen in random from the population. The
mutation of the parent creates an offspring using the weighted error between these particles’
positions. Weighted error between the position of child particles is eq. (7):

If (rand(y < CRORd == k)
then Tid = Pgd + 62,(1

8ya = (Pya- Pz,d)‘z"(P3,d— Pa,a) Rl

3.4 PSEUDO CODE FOR DE-ACO ALGORITHM

For each particle

Initialize particle

End

Do

For each particle

Calculate Fitness value

If the fitness value is better than the

best fitness wvalue

(pbest) 1in memory

Set current value as the new pbest

Endif

End

Choose the particle with the best fitness
value of all the particles as the gbest

For each particle

Calculate Pheromone update using (11)

Calculate pheromone trial updating of
ants using (12)

End For each particle in parent set,

Select 4 (or 6 for Gaussian distribution)
particles

Evaluate weighed differences

14

Mutate the parent

End

For each particle in offspring set,
Calculate the fitness

If fitness(parent) < fitness(offspring) then
Replace parent with offspring

End

3.5 APPLICATIONS

Ant colony optimization algorithms have been applied to many combinatorial
optimization problems, ranging from quadratic assignment to protein folding or routing
vehicles and a lot of derived methods have been adapted to dynamic problems in real variables,
stochastic problems, multi-targets and parallel implementations. It has also been used to produce
near-optimal solutions to the travelling salesman problem. They have an advantage
over simulated annealing and genetic algorithm approaches of similar problems when the graph
may change dynamically; the ant colony algorithm can be run continuously and adapt to changes
in real time. This is of interest in network routing and urban transportation systems. The first
ACO algorithm was called the ant system and it was aimed to solve the travelling salesman
problem, in which the goal is to find the shortest round-trip to link a series of cities. The general
algorithm is relatively simple and based on a set of ants, each making one of the possible round-
trips along the cities. At each stage, the ant chooses to move from one city to another according

to some rules:

1. It must visit each city exactly once;

2. A distant city has less chance of being chosen (the visibility);

3. The more intense the pheromone trail laid out on an edge between two cities, the
greater the probability that that edge will be chosen;

4. Having completed its journey, the ant deposits more pheromones on all edges it
traversed, if the journey is short;

5. After each iteration, trails of pheromones evaporate.

15

CHAPTER 4

FIR FILTER USING DE-ACO ALGORITHM

4.1 DESIGN OF FINITE IMPULSE RESPONSE FILTER

Finite impulse response (FIR) filter is a filter whose impulse response (or response to any
finite length input) is of finite duration as in eq. (8), because it settles to zero in finite time. The
output of the FIR filters depends on the present, and past input values as in eq. (9): and these
filters are named as non-recursive filters [1]. The multipliers, series of delays, and adders are
used to implement the FIR filter to create the filter’s output from (figure4). It is known as an all-

zero filter because it does not have any poles. They are also known as feed forward or transversal

filters.
by0<n<N-1
h(n) =47 "~ "=
() { 0, otherwise (®)
h(n) represents impulse responses atn= 1,23, N — 1 and N is the order of the filter

y(n) =¥{obx(n—k) (9
where y(n) represents output of fir filter

H(z) = Xnzgh(m)z™ (10)

H(z) represents transfer function of the FIR filter from eq. (10)

FIR filter is designed on the ideal filter approximation according to given design conditions. The
following parameters can specify an FIR digital filter: the orders of the filter = 15, pass band cut-
off frequency = 200kHz, stop band cut-off frequency = 355kHz, by using this stop band and pass
band ripple errors are minimized from (figure 5). The optimization is aiming to reduce the ripple

error of the pass band and stop band [10] while keeping a sharp transition band.

16

\/
NI
A\
N

x[n] > 77

| }
\/b b \/b b,
»@,@_ ,@_> y[n]

Figure 4. Basic Structure of FIR filter

|H (w)]
1+46; |
1] Passband Ripple
1—dy ¥ SN]
: Transition Band
Passband i
1
1
1
1
I
|
j Stopband
8 | !
Stopband Ripple |
1
wp Ws T w

Figure S.Frequency Response of Low Pass Filter

The main focus of this project is on the implementation of a FIR in HDL, which can be
broken down into three main logic components
e A circular buffer to clock each sample into that properly accounts for the delays of the
serial input
e Multipliers for each of the taps' coefficient value

e The accumulator registers for the summing result from each tap's output.

Coefficients optimization is the main and high-effective aspect which effects the output of the
filter. Also, the cost function is introduced here. There are many ways to design Digital FIR filters,
such as windowing functions, frequency sampling method, and non-linear optimization algorithm
method. Evolving algorithms have been proved to be the digital FIR filter design. Moreover, the
following part will introduce the two of them namely Ant Colony Algorithm (ACO) and DE to
design FIR filters.

17

Invert sample EEG data x (n)

Check whether data is inverted
or not?

Compute product Compute product

(summation of H(n)) (summation of x(n-k))

YES Sum of product and load
next stage

Product summed
or not?

- =

Figure 6.Flow Chart to Design FIR filter

18

4.2 FILTER OPTIMIZATION TECHNIQUES

The various iterative solutions are compared to get the optimum solution or satisfactory
solution for a given application which is done by the optimization algorithm. The algorithms are
deterministic which deal with specific rules for moving from one solution to the other. The algorithm

which has the probabilistic transition rule is known as stochastic.

USING A DIFFERENTIAL EVOLUTIONARY ALGORITHM

The standard approach for solving an optimization problem is to design an objective function
which can replace the problem’s objectives while limited to its constraints. The DE algorithm is a
heuristic algorithm based on the population using the three operators; Mutation, Crossover and
Selection to optimize the cost function or detached function over the successive generations [3]. As
for the linear phase digital FIR filter design, the inputs of the algorithm are a group of coefficients {h
(0), h (1), h (2), , h(N-1)}. Moreover, at the end of the optimization, only one group with
optimum fitness value will be obtained. In every generation, to produce a trial vector each vector of
the parent parameter is targeted for the crossover with a vector. The resultant trial vector is called a
child of the two parent vectors, and it will compete with the target vector in the following steps. After
mutation and crossover operations violate the bounds; it is limited, and likewise the bounds are

regulated [7]. The children vectors are used to calculate the objective function values.

A. Mutation operation

There are several versions of mutation operation. All of them aim to produce new values from the
original ones. An initial mutation individual vector y; is generated by eq. (11) randomly selecting
three members of the population, xi1, xi2 and xi3. Then yi is produced as
yvi=xi1 + F (xio — xi3) (11)

Where F is a positive scale factor, effective values for which are typically less than one. All the
individuals will experience the mutation until D mutations have been made.
The most useful strategies are:
“Best/1.”

Vi = Xbest + F (Xi1 — Xi2) (11.1)

19

“Current to best/1.”

yi=xi+ F (xit — xi2) + F (Xbest — Xi) (11.2)
“Best/2.”

Vi = Xbest + F (xi1 — xi2) + F (xi3 — Xia) (11.3)
“Rand/2.”

vi=xi+F (xi2o — xi3) + F (Xisa — xi5) (11.4)

Where the index il, i2, i3, i4, i5 are different with the current population i which represent the

random different integers generated within range [1, NP], NP is the number of parameter vectors.

B. Crossover operation:

After the mutation operation, a value v;i¢ is produced which is in the position of x;i¢.
Crossover operation is then applied to each pair of the target value x;¢ and its
corresponding mutant value v;i¢ to decide a new value: w;i¢ from eq.(12) . DE employs

the crossover as the basic version:

Uj G

Ju
vji'

xS, if rand < CR or j = jrand
G _ { i if j=] 12)

otherwise

CR is defined within the range (0.7, 1]. jrand is a randomly chosen integer in the range

[1, D].

C. Selection Operation

After the mutation and crossover operations, some new parameters values are added to
the current population. Meanwhile, we will remove some of the members which exceed
the search space. Then, the cost function values of all the vectors are calculated. After
that, a selection operation is performed. The objective function value of each member
(wji G) is compared to that of its corresponding target vector f(xji G) one by one in the
current population. If the target vector has better objective function value than the
corresponding trial vector, the target vector will maintain and the trial vector will not

enter the population of the next generation. Otherwise, the trial vector will replace the

20

target vector in the population for the next generation. The selection operation can be

expressed as eq. (13):

(13)

G+l _
1 xfi, otherwise

o = {1 160>

Figure 7. Flow chart of DE Algorithm

Control parameters:

Suitable control parameters are important for DE algorithm to increase the speed of
searching.

1)F €[0.5,1]

2)CR € [0.8,1]

1) Np=1001D

Liu and L Ampinen in [14] set control parameters to F =0.9, CR = 0.9.

In this chapter, we use the constant control parameter mechanism during the iteration and
the control parameter Np keeps no change as well. Both F and CR are applied at the
individual level. The original DE algorithm has three control parameters that need to be

21

adjusted by the user. Different parameters could have influenced in different function
problems. When we implement a self-adaptive parameters mechanism in this design,
there is no apparent effectiveness in the result. So we still adapt the constant values for
this design.

USING ANT COLONY OPTIMIZATION ALGORITHM

ACO is used to calculate the shortest path between source and destination [4]. The two
functions are mainly done by the ant that is in drift until finding the source of food and then back to
the nest depending on the pheromone trail on random from eq. (14). It is a chemical substance that is
released by ants when it goes into the search of food [6]. Pheromone trails discover the shortest path
upon evaporation and reapplication of it which is updated frequently by eq. (15). Pheromones show
in some path the common storage. The optimum solutions from a finite number of solutions are
calculated by combinatorial optimization. It works on the domain of those optimization problems that
have set of appropriate solutions that will be discrete. Better results can be obtained for lesser

appropriate discrete solutions.

11
T nk(l)
P (t) = 14
nic (£) i k(O +t0n,k(D+tlin k(D) (14
™ k(t + 1) = ptiin k() + T AT () + AT (D) (15)

4.3. DIFFERENTIAL EVOLUTION-ANT COLONY OPTIMIZATION
ALGORITHMS

The desired frequency domain specifications and power minimization are the dual objectives to be
considered while designing a filter. The proposed DE-ACO has a more excellent performance with
strong ability to find optimal solution and quick convergence speed. The contribution of the present
work is three fold process.

Firstly a novel optimization technique based on the hybridization of a heuristic technique, i.e. ant
colony algorithm and an Evolutionary technique, i.e. DE algorithm is proposed, which conserves the
individual advantages of both the techniques, i.e. it improves the effectiveness; reduce the design
error (ACO) [5] and speeds up execution process (DE), while discarding their limitations. The
design of FIR filter is based on the approach of optimization. It satisfies the dual objectives of
minimizing power consumption during implementation and reducing ripples in the stop band and

pass band.

22

In this approach, ants in colony randomly select components according to previous pheromone
distribution and release pheromone on the components they select. The ants will eventually converge
on a set of components, thus completing the optimization.

Secondly, a hybrid of DE and ACO gives a new method of optimization called the DE-ACO. In
DEACO, new offspring is created by the mutation of the parent. In this work, gbest is taken as the
parent. Gaussian distribution has been considered. For mutation, four particles are chosen in random
from the population. The mutation of the parent creates an offspring using the weighted error

between these particles’ positions.

The mutation takes place according to:

If (rand(y < CRORd == k)
then Tid = Pgd + 62,d
_ (PLa—P24)+(P3a—Paq)

Oz = . (16)

Where 6> is the weighted error in different dimensions ,Tiq is the offspring ,Pgq is the best position of
the parent from eq. (16). The random number between [0, 1] is less than the reproduction rate or the
position of the particle in any one randomly chosen dimension, k is mutated then the mutation takes
place. The parent might not be the same as offspring. Fitness function is also evaluated. The parent is
replaced by the only offspring and thus has better fitness. If no replacement takes place, then it will

be retained for next iteration.

4.4 DE-ACO-BASED FIR FILTER DESIGN

Thirdly, DE-ACO based FIR filter design is formulated.
The transfer function of the FIR filter is as follows eq. (17):

i’—" =ay+ a;z7 + az ? + - +apz ™ (17)
n

The particles are dispersed in a D dimensional search space, where D = N for FIR filter. The new
coefficient is used to calculate the particles fitness and iteration which improves the search. The error
obtained is below certain limit or the error is below after some iteration to obtain the result, and it

will be considered as the final result.

23

An error function is an approximate error used in the Parks McClellan algorithm for filter design:
Ew) = Gw)[Ha(e") — (H(e/™)] (18)

Where, G (w) is used to provide different weights for the relative errors in different frequency bands

as the weighting function from eq. (18), H;(e/%) Is the frequency response of the desired filter and

H(e’") is the frequency response of the approximate filter.

F, = Vrvrls;lVX(IE(W)I —6,) + VrgleX(IE(w)I -4&) (19)

Where, 8, and 05 are the ripples in pass and stop bands and wp and ws are pass and stop band cut-off
frequencies respectively from eq. (19). The error is minimized by algorithms, and thus it increases
the fitness.
4.5 ADVANTAGES OF DE-ACO ALGORITHM

DE algorithm is a new heuristic approach mainly having three advantages.
Finding the true global minimum of a multimodal search space regardless of the initial parameter
values. Fast convergence. It uses only few control parameters [9]. Advantages of the ACO is inherent
parallelism, positive feedback accounts for rapid discovery of good solutions and used in dynamic
applications.
4.6 FIR FILTER DESIGN

The FIR filters are designed to optimize the coefficients that give the best frequency response.
The filter is implemented by Xilinx [2] integrated synthesis environment tool is shown in (figure 8).
FIR filter is introduced to reduce the ripple constant and also to reduce the power consumption. The
filter is sensitive to the positive edge of the clock and negative edge of reset. s_axis_tdata represents

input data to the filter and output data is in m_axis_tdata. The obtained output with a delay is 20 ns.

fir_filter
4 -

A P
fir_filter

Figure 8.Register Transfer Level Logic Diagram

24

The FIR designed is composed of three main logic components: a circular buffer to clock each
sample into that properly accounts for the delays of the serial input, multipliers for each of the taps'
coefficient value, and the accumulator register for the summing result from each tap's output. Both
DE and ACO are implemented in MATLAB, and the coefficients are quantized to minimum word
length. The realizations of the filters are done using the transposed form structure. In the constant
coefficient FIR Filters, adders /subtractors replaced the multipliers which are called multiplier adders
(MA). Adders are realized using ripple carry adders.

Implemented a simple 15-tap low pass filter from (figure 9) FIR sampling at 1Ms/s with a passband
frequency of 200 kHz and a stop band frequency of 355kHz which gave me the following

coefficients:

Figure 9. 15 Tap Low Pass Filter Coefficients

Now after deciding on the order (number of taps) for your FIR and obtaining your coefficient
values, the next set of parameters that must be defined is the bit width of the input samples,
output samples, and the coefficients themselves. For this FIR, input sample and coefficient
registers to be 16 bits wide and my output sample register to be 32 bits since the product of two
16-bit values is a 32-bit value (the widths of the two values being multiplied add to give the
width of the product, so if chosen 16-bit input samples with 8-bit taps then the output samples
would be 24 bits wide).These values are also all signed, thus the MSB is used as the sign bit and
the lower remaining bits are what the value must fit into. To set these values as signed data type

in Verilog, the keyword signed is used as in (figure 10):

reg signed [15:0] register_name;

Figure 10. Signed Keyword in Verilog

25

The next thing to address is to handle the coefficient values in Verilog, the decimal point values
need to be converted to fixed point values. Since all of the coefficient values are less than one, all
15 bits (the MSB of the total 16 bits is the signed bit) of our registers can be dedicated to
fractional bits. The no. of bits in the register you want to dedicate to the integer part of the
number vs the fractional part of the number is decided. Therefore the math to convert the
fractional value taps is: (fractional coefficient value)*(2*(15)) from (figure 11) ,where any
decimal value of this product is rounded off and the two's compliment of the value is calculated

if the coefficient is negative.

Figure 11.Conversion of Fractional Value TAPS to Hex Form
4.7 LOGIC OF THE FIR MODULE

The first of which is the circular buffer which brings in a serial input sample stream from (figure

12) and creates an array of 15 input samples for the 15 taps of the filter.

@ (posedge clk)
begin
if(enable buff == 1'b1)
begin

buffo <= in_sample;
buffl <= buffo;
buff2 <= buffil;
buff3 <= buff2;
buff4 <= buff3;
buffs <= buff4;
buffé <= buffs;
buff7 <= buffé;
buffd <= buff7;
buff9 <= buffs;
buffio <= buff9;
buffil <= buffio;
buff12 <= buffil;
buffi3 <= buffi2;
buffi4 <= buffi3;

Figure 12. 15 Input Samples for 15 Tap FIR Filter

26

Next, the multiply stage multiplies each sample by each of the coefficient values as in below (figure

13):

/* Multiply stage of FIR */
always @ (posedge clk)

begin
if (enable_fir == 1'b1)
begin
acco tap@ * buffe;
accl tapl * buffl;
acc2 tap2 * buff2;
acc3 tap3 * buff3;
acc4 tap4 * buff4;
accs tap5 * buffs;
acch tap6 * buffé6;
acc7 tap7 * buff7;
acc8 tap8 * buffs;
acc9 <= tap9 * buff9;
accle <= tapl@ * buffie;
accll <= tapll * buffll;
accl2 <= tapl2 * buff12;
accl3 <= tapl3 * buffi3;
accl4 <= tapl4 * buffis;

Figure 13.Multiplying Each Input Sample with Coefficient Values

The resulting values from the multiply stage are accumulated from (figure 14) by addition in a

register which ultimately is the output data stream from the filter.

@ (clk)

(enable_fir == 1°b1)

m_axis fir_tdata <= acc@® + accl + acc2 + acc3 + acc4 + acc5 +

acch + acc7 + acc8 + acc9 + acclO + accll + accl2 + accl3 + accl4g;

Figure 14.0utput Data Stream from FIR filter

Finally, the last part of the logic is the interface to stream data to and from the FIR module.
The AXI Stream interface is one of the most common, thus what I chose to implement. The key
aspects are the valid and ready signals which allow for the control of the flow of data between
upstream and downstream devices from (figurel5). This means the FIR module needs to provide a

valid signal to its downstream device to indicate that it's output is valid data, as well as be able to

27

pause (but still retain) its output if the downstream device de-asserts its ready signal. The FIR module

must also be able to behave this same way with its upstream device on its master side interface.

Figure 15.AXI Stream Timing Diagram

There are two main things that need to be tested in the FIR module: the filter math and the
AXI stream interface. To accomplish this, a state machine in the test bench that generates a simple
200kHz sine wave is created and also toggles the valid signal on the slave side and the ready signal
on the master side of the FIR's interface. Under the simulation sources in the Sources window, set the
testbench module as the top-level file by right-clicking on it and selecting Set as Top from the
reference of the (figure 16).

Source Node Properties...
= OpenFile

Replace Flle...

X Remove File from Project
Disable File

Move to Design Sources
Hierarchy Update 3
{ C Refresh Hierarchy
1 IP Hierarchy 4
== SetasTop
1 h

Set Library...
Set File Type...
Set Used In...

Edit Constraints Sets...

Edit Simulation Sets... ‘

4+ add sources..,

Figure 16.Setting Test Bench as Top
28

ZN h(m)z"n=01...N (20)

n=0
where N is the order of the filter which has (N) number of coefficients. h (n) is the filter’s impulse
response. It is calculated by applying an impulse signal at the input. The values of h(n) from eq. (20)
will find the type of the filter.

il e]

G}
|-..--_.-..'.-| b
L= ——
e P b ilvm - .l"f‘\ S
'\]J

3
E

e e e e e e e e (e e

5

i

e b e e
|

&

Figure 17.Logic Design of 15 tap FIR Module

The DE-ACO algorithm, the individual represents h(n). In each iteration, these individuals are
updated. Fitness of particles is calculated using the new coefficients. In each iteration, this fitness is

used to improve the search and results obtained after a certain number of iterations or after the error

29

is below a certain limit is considered to be the optimal result. Fitness of the individuals is calculated
using the filter coefficients. Because the FIR filter uses a linear symmetric structure from (figure 17),
the impulse response coefficients have symmetrical features. Then we symmetrically add the pre-
input x(n) for simplifying the design.
By using DE-ACO the desired magnitude response and filter coefficients are
obtained. Filter designed by the DE-ACO method produce better response in terms of
minimum stop band ripple magnitude and maximum stop band attenuation. Both DE and
ACO are implemented in MATLAB, and the coefficients are quantized to minimum
word length. The realizations of the filters are done using the transposed form structure.
In the constant coefficient FIR Filters, adders/ subtractors replaced the multipliers which
are called as multiplier adders (MA). Adders are realized using ripple carry adders .The
fitness based adaptive DE with ACO known as fitness based adaptive DEACO is used
for the design of 15th order FIR filters. It is revealed that DE-ACO has the ability to
converge to the best quality near-optimal solution and possesses the best convergence
characteristics among the algorithms. DEACO is more efficient in optimizing the filter
coefficients successfully. Maximum power consumption occurs during multiplication
operations. Hence, to reduce power consumption, the number of multiplications has to be
minimized. The number of SPT terms in the filter coefficients has to be optimally

minimized, without compromising on the filter response.

30

CHAPTER 5§

RESULTS

5.1 SIMULATED RESULTS FROM MATLAB FOR ACO

100

80

60

40 r

201

0 20 40 60 80 100

650 T T T T T

600

550

500

COEFFICIENTS

450

400 |

350

0 50 100 150 200 250 300
lteration

Figure 18.0ptimized Outputs from ACO Algorithm

31

SIMULATED RESULTS FROM MATLAB FOR FIR FILTER

< &) (3 https//matlab.mathworks.com A -
e g — ~
File Edit Analysis View
- 2 o Y
Qmi - DEEA<iO0ENEE#:+0- BHONES
New Open Save @ GoTo | z
- - - ~ [Bookmark ~ —Current Filter Infor — Magnitude Response (dB)
FILE NAVIGATE =
F Bl O /> MATLAB Drive > 0 \ -
~ Curent Folder o acom *| myct Structure: Direct-Form FIR @ et
3 -20
Name ~ Git | 1 order: 15 = °
[Publishea - A Stable: Yes E
& Source: Designed c -40
) 31812651 3 \‘ / [\ 75X
() aco.asv = |{ \ { \
‘j aco.m B { ‘(
& : " i " " 1
_\.l acog.m Store Filter ... 0 100 200 300 400
_] coeff.fda Filter Manager ... Frequency (kHz)
#) CreateMo
—j _ ResponseType ____ _ Filter Order e qf i = ificati =
&) mainm —| ® L Units:
() mycoeffc o oWpass = ® Specity order: 15 " kHz ~ Enter a weight value for
4 i @8] U Highpass v - 00 each band below.
(= - st
_] mycoeffhe T JBandpass I rey Wpass: 1
7<) PlotSolutic E Bandstop ~Options | Fpass: 200
- _ Wstop: 1 .
() rotaasv = Differentiator v | || DensityFactor: 16 Fstop: 355 | &
bl Design Method |
ot Conmana oo M I
£ DavtatbaiA — o || OIR Butterworth v =
¥ Workspace o .

Did you mean:) Ly
iiName iiValue >> filterDesi E3|| @FR | Equiripple & -
! > >> Filter e
I A — TF-8 CRLF script Ln1Col1 ¥

Designing Filter ... Done

Figure 19.FIR Filter Designing Using Parameters

COEFFICIENTS OBTAINED FROM FILTER DESIGNER

¢ @] 51 https://matlab.mathworks.com A I8] >
|3} HOME [DITOR
&
g 8 e
New Open Save GoTo Q fnd -
FILE NAVIGATE oDt SECTION RUN ry
F &l | @ /> MATLAB Drive > -
¥ Current Folder o aco.m mycoeft.fcf mycoeffhex. fef * o
Name = Git 14 Numerator: -
[Published . =15 ©.0@328668320615359537545385748558146588
i i 16 -8.813631378502728684620759486594642809592
J 17 -9.805285700745132865930435265511277975747
J aco.asv 511 18 ©.84877327374538432396726453703155147682
ﬂ acam o 13 -8.8184278776137293688008416997115828818989
= 28 -8.182179731783442562739367303347801781725
) acoqm 21 2.899162287783980326838495508396675197488
) coeftfda w |22 @.485370939748732320254465867052203075618
B o 23 ©.485378039748732329254465867052203975618
&) Greateho 24 8.899162287783980326836495509396675197488
i]maln.m =) 25 -9.102179731789442562739367303947801701725
J mycosff fc 26 -8.818427877613729368000416997119828818989
- 27 ©.04877327374530432396726453703195147682

) mycoefihe 28 -8.B@528570@745132865930435265511277975747

®

BPIO[SO\UEI 28 -8.213631378502728684620759480594642809592
38 ©.PB328668320615355537545385748558146588
J roL.asy
) L -
Frotm Command Window Q@
F ., T = o FJ'lt Desi a
v WDI"kSﬂBCB o 1 erleslgner
>
ii Name iiValue »» filterDesigner
1 » >
4 UTF-8 LF plaintextfie Ln 11 Col 28 X

Figure 20.Coefficients Obtained from Filter Design

32

https://matlab.mathworks.com o o s

i &
B ¢

MNew Open Save GaTo

ol Drive » =
Current Folder my mycoeffhex fcf
i . Numerator: =
3f6aecac9c3fece6
bf8beacdasfedse
= bf75a6757da%daba
aco.asv 3fa4e83c@a92e979
o bf855b368a8a985¢
K bfba2B8736e59866¢C
i AR0% 21 3fh9s2531e7sbib
| coeff fda 22 3fdf1e4d7fcb7527
CreateMo 3fdflead7fcb7527
3 3fb962b31fe75b3b
=] mairm bfba2B736e59866¢
| mycoefiic b855b360282905¢
. = 3faded3cPanzes7s
] Mycaetix 28 bf75a6757d29daba
PlotSolutii 29 bf8beacdacf2edse
3 i@ Gascac9c3fEcs
rot.asv 3@ 3f6aecac9c3fBcEs B
31

fakm Command Window

BN s dabial

- -
Workspace >» filterDesigner
| 5>
ii Name i Value >» filterDesigner
4 >
.
Figure 21. Coefficients Obtained from Filter Design in Hexadecimal
5.2 FIR FILTER OUTPUTS FROM VIVADO
4 firproject - [C:/Users/SIMULATION 3/firproject/firprojectxpr] - Vivado 2016.1 - X
File Edit Flow Tools Window Layout View Run Help
-1 X 9 D ¥ & K| L (G |2 0efautLayout v | W N | Kl R, b 10 |us v | 43 v Ready
Flow Navigator 2 « Behavioral Simulation - Functional - sm_1 - tb_FIR X
SN
Al
4 Project Manager §
@ Project Settings
&% Add Sources <l ¢ @k
¢ Language Templates C reset
{J 1P Catalog £ [l 2 :
=
(=}
4 IPIntegrator ? nd s_axis_fir_tdata[15:0)
¥, Create Block Design @& m_axis_fir_tvalid
™ m_axis_fir_teep[3:
M m_axis_fir_tdata[31:0)
W state_reg[4:0] 3 0 04 %05 Y06)0
2iSenwlation g cntr{3:0)
@ Smuiation Settings & s_axis_fir_tast
@) Run Smuation @ 5_ais_fr_tready
by m_axis_fir_tast
4 RTL Analysis
@ Elaboration Sett Si_tkeep
A e 4 wvfm_period[3:0]
(2% Open Elaborated Design i)
) G 4 sendSample0[4:0)
@ Synthesis Settings 8 cendSauple (40}
4 sendSample2(4:0)
& Run Synthesis
W4 sendSample3[4:0]
W4 sendSample4{4:0]
4 Implementation _—)
@ Implementation Settings
> Run Implementation
v 3 Td Console =]

Sim Time: 1us

Figure 22.1. FIR Filter Outputs from Vivado

33

Window

4 Project Manager
@ Project Setengs
¥ Add Sources
Language Templates
J- 1P Catalog

.

P Integrator
¥, Creste Block Design

Simulation
@ smuiston setvngs

i Run Sm.

RTL Analyas
@ Babor
5% Open Baborated Desion

4 Syrhess
@ Synthesis Settings
$ Run Synthess

4 Impleventation

@ impiementaton Settngs

» Run Implementation

v PROJECT MANAGER

v SIMULATION
B
> ¥
o 9

© Report mmay
~ Re *
"

' a

Layout View Run Heb
% @ X| L 3 =0efautiayout - N KR P 500 [ns v 43)| & Ready

Behavioral Ssmulation Functional sm_1 -

cope

Objects

&

B_FR

@ fir by X

fr _tvaid
_aods_fr_tready
fr_tdata[15:0]
_fr_tvald
fr_theep]
" m_axs_fr_tdsta[31:0]
~ -

W serdSample
W sendSamp

5 7d Conscle

Figure 22.2. FIR Filter Outputs from Vivado

Tue 1425

dsp_demo - [/home/paraliels/dsp_demofdsp_demo.xpr] - Vivado 2019.2

e

Q

Scope

m_asts_fir

tdata(31:0

Td Console

B E B

Figure 22.3. FIR Filter Outputs from Vivado
34

Fle Edt Fow Toos Wndow Layout View Heb

[Q- search commands]

CROORRXY DD>UHGOOBK LG St | X &N © e
Flow Navigator 2« Design - 1 (active) ?2 X

device X |@ fir_main.v X |@ fir_th.v X | I3 Vivado Synthesis Report -synth_1 X | (3 Utiization Report -synth_1 | [3) Post opt_design DRCReport -impl_1 X | i Schematic x| « > @ ° P 2 X
3] | 313Cels 641/OPorts 04Nets

b [Open Elaborated Design o

) Synthesis Settings
> Run Synthesis
4[] synthesized Design

&, Constraints Wizard
{24, Edit Timing Constrair
¥ SetUp Debug
(& Report Timing Summ
M, Report Clock Networ
] Report Clock Interac
[Report Methodology
@ Report DRC
[Report Noise
Report Utiization
£D) Report Power
7] schematic

|8] [@ Propertes |

BI+COMEOTEFARS L
il

‘mueﬁst

asteststEn L

4 Implementation
& Implementation Settings
> Run Implementation
> [3] implemented Design

g ST T

4 Program and Debug

) Bitstream Settings
¥ Generate bitstream B —
> @ Open Hardware Manage }@Tdc:msde ‘O‘fﬂ‘;}ﬁ)\éi

Figure 23.1. Schematic Diagram of FIR Filter Implementation

File Edt Flow Tools Window Layout View Help [Q- search commands |
RO RRXY DD NNGDOD X X @ [Bohitiayot - & N|® Implementation Complete
Flow Navigator 2« Design - 1 (active) 2

Jevice X |@ fir main.y X [@ fir_tb.v X | [3) Vivado Synthesis Report - synth_1 X | 3 Utiization Report -synth_1 X | 3 Post opt_design DRC Report - impl_1 xw «pE ? @2 X
5]| 313Cels 64lOPorts S0dNets

]
s i3
> g% Open Elaborated Design o

&) Synthesis Settings
$> Run Synthesis
4[] synthesized Design

&, Constraints Wizard
3, Edit Timing Constrair
¥ Set Up Debug
() Report Timing Summ
M, Report Clock Networ
¥ Report Clock Interac
[Report
@ ReportDRC
] Report Noise
Report Utilization
&) Report Power
P7{] Schematic

= ~
q (20)

+1

m s fe 1) i m s e tdem0_0 T m st tdan0_1

ed12) = = =

ey AcouTpe)

&) [Propertes |

RII+SOEESGDTmERR
b

S

[3q Netist

El

Acoumaen] ouTpenif HouT9)
scoumni7o} scouTirolf soouTi7o)

ed13) 2 owmmone oveRon- ovmRon
uncEsROn- suzal puzaf Pz

eqs4]

4 Implementation
&3 Implementation Settings:

> Run Implementation]
» 8 ed oo eas) | <+

4 Program and Debug A

@ Bitstream Settings | 1 L < v
|

%) Generate Bitstream < 2l

> % Open Hardware Manage | | [TdConsdle [0 [R |39 @]

Net: s axis fir treadv OBUF Tvpe: SIGNAL Route status: Has unplaced ports or pins

Figure 23.2. Schematic Diagram of FIR Filter Implementation

35

Fle Edt Flow Tools Window Layout View Help
:, 9> D> VHGLOBKIER
Flow Navigator 2 « | Implemented Design - xc7a100tcsg324 1 (active) 205

Implementation Complete

A & & ¥ Project Summary X | &% Device X | @ fir_ main.y X | @ fir_tb.v X ?2 &2 X

4 Project Manager

Properties

&3 Project Settings

5% Add Sources

Language Templates
L} 1P Catalog

[N

IP Integrator

3 Netist

% Create Block Design

[N

Simulation
& smulation Settings

@) Run Simulation

.

RTL Analysis
{3 Elaboration Settings
¥ Open Elaborated Design

Synthesis
3 Synthesis Settings
& Run Synthesis
{z¥ Open Synthesized Desig

N

Implementation
3 Implementation Settings

[» Run Implementation

4[] implemented Design = RR[R D |[9]@ Tmng

Figure 24.1. Implementation Design

Flow Navigator 2 « | Implemented Design - xc7a100tcsg324 1 (active 2

A& X Project Summary X | Device X | @ fr_main.v X |@ fr_th.v X ? &2 X
4 Project Manager
3 Project Settings

&% Add Sources

Properties

3

Language Templates
LF 1P Catalog

8

IP Integrator

3 Netlist

2 Create Block Design

[N

Simulation
) Simulation Settings

Oooo Ooopopo OO O3

(@) Run Smulation

[N

RTL Analysis
3 Elaboration Settings
{5 Open Elaborated Design

[N

Synthesis
£ Synthesis Settings
@ Run Synthesis
&% Open Synthesized Desig

Implementation
3 Implementation Settings

[> Run Implementation

4 [implemented Design =] D 9| G Tming

Figure 24.2. Implementation Design

36

Fle Edt Fow Toos Window Layout View Help Q- s s
3B MORRXY PD YNNI LOD X I (@ [BoehtLayout e ® Implementation Complete

Flow Navigator 2 « | Implemented Design -xc7a100tcsg324 1 (active) 2 X
= 5 Power -impl_1 2 @A X
4 RTL Anal =
- NlaZs e o summary
@ Elaboration Settings N

@ Thisisa savedreport X || oo anatysis from Implemented netist. Actvity derived from consiraints fles, On-Chip Power

>
@ Open Elaborated Design
Settings simulation fles or vectorless analysis.
3 [Dynamic: 40.477W (95%
4 S mmary (41.268 W)

Power Supply Total On-Chip Power: 41.268 W (Junction temp exceeded!) .
@ Synthesis Settings =) Utiization Details Junction Temperature: 125.0 °C O Signals: 1.057W
} 98%
73%

& Run Synthesis Herarchical (%0.477 Thermal Margin: -128.3°C (27.6 W) Hloge: 0.062W
(5% Open Synthesized Desig HDse: 9.175W (23%
ouo: 30.184W (73

Effective JA: 4.6 °CW
Power ied to off-chip devices: 0W
4 Implementation iﬁsr:tu o Conﬁd:::evd: ’ Low
@ Implementation Settings Logic (0.062
> Run Implementation DsP 0175
4[] implemented Design e
&, Constraints Wizard
24, Edit Timing Constrair
(& Report Timing Summ
I, Report Clock Networ
1 Report Clock Interac
[Report Methodology
@ Report DRC
[Report Noise
] Report Utiization
&) Report Power

[Device Static: 0.791w

4 Program and Debug
@ Bitstream Settings < >
%) Generate Bitstream limpl 1 4>\
{@? Open Hardware Manage \, = Td Console Messages | [Log | 3 Reports | O Package Pins | 3 DesignRuns &) Power | (j Timing

Figure 25. Power Utilization Details

VIVADO SYNTHESIS REPORT

Start RTL Component Statistics

Detailed RTL Component Info:

+---Adders
2 Input 4 Bit Adders := 1
+---Registers
32! BIt Registers := 1
16 Bit Registers := 10
4 Bit Registers := 2
1B3t Registers := 3
+---Muxes
2 Input 4 Bit Muxes := 2
3 Input 1 Bit Muxes := 1

Finished RTL Component Statistics

Start RTL Hierarchical Component Statistics

Hierarchical RTL Component report
Module FIR
Detailed RTL Component Info :

37

+---Adders :

2Input 4Bit Adders:=1
+---Registers :

32 Bit Registers =1

16 Bit Registers := 10

4 Bit Registers :=2

1 Bit Registers :=3

+---Muxes :
2 Input 4 Bit Muxes =2
3Input 1 Bit Muxes := 1

Finished RTL Hierarchical Component Statistics

Figure 26. Vivado Synthesis Report

UTILIZATION REPORT FOR THE DESIGN

Utilization Design Information

Table of Contents

1.

Slice Logic

1.1 Summary of Registers by Type

2.
. DSP

. 10 and GT Specific
. Clocking

. Specific Feature

. Primitives

. Black Boxes

. Instantiated Netlists

O 00 3N L W

Memory

| Site Type
Rt e o
| Slice LUTs*

| LUT as Logic

| LUT as Memory

| Slice Registers

| Register as Flip Flop
| Register as Latch

| F7 Muxes

| F8 Muxes

ot o e e

b o————— e e . — ¢

bo——— e e e e o —

bo——— e e e e o — 4

----------- Fommm g
Available | Util% |
----------- e
63400 | 0.01 |
63400 | 0.01 |
19000 | ©.00 |
126800 | ©.18 |
126800 | ©.18 |
126800 | ©.00 |
31700 | ©.00 |
15850 | ©.00 |
----------- R T |

1.1 Summary of Registers by Type

+ + + + +
| Total | Clock Enable | Synchronous | Asynchronous |
+ + + + +

10| | - | - |

10| | - | Set |

|10 | | - | Reset |

10| | Set] -

|10 | | Reset| - |

0| Yes | - -

[0 | Yes | - | Set |

|21 | Yes | - Reset |

[0 | Yes | Set | - |

| 210 | Yes| Reset| -

+ + + + +

2. Memory

+ ot + + +

| Site Type | Used | Fixed | Available | Util% |

+ ot + + +

| Block RAMTile| 0] O] 1351 0.00 |

| RAMB36/FIFO*| 0| 0] 135 0.00 |

| RAMBI8 | 0] O] 270 0.00 |

+ + + + + +

* Note: Each Block RAM Tile only has one FIFO logic available and therefore can
accommodate only one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a
Block RAM Tile, that tile can still accommodate a RAMBI8E1

3. DSP

+ + + + + +
| Site Type | Used | Fixed | Available | Util% |
+ + + + + +
| DSPs | 12| 0] 240/ 5.00 |

| DSP48El only| 12| | |

+ + + + + +

4. 10 and GT Specific

39

+ + + + + +
| Site Type | Used | Fixed | Available | Util% |
+ + + + + +
| Bonded IOB | 60| 0] 210]|28.57]

| Bonded IPADs | 0] O] 21 0.00 |

| PHY CONTROL | 0] O] 6| 0.00 |

| PHASER REF | 0] O] 6] 0.00 |

| OUT_FIFO | 0] O] 241 0.00 |

| IN_FIFO | 0] O] 241 0.00 |

| IDELAYCTRL | 0] 0| 6] 0.00]

| IBUFDS | 0] O] 202] 0.00]

| PHASER_OUT/PHASER OUT PHY | 0| 0| 241 0.00]
| PHASER_IN/PHASER IN PHY | 0] O] 24| 0.00]
| IDELAYE2/IDELAYE2 FINEDELAY| 0| 0| 300 0.00 |

| IBUFDS_GTE2 | 0] O] 41 0.00 |
| ILOGIC | 0] O| 210/ 0.00|

| OLOGIC | 0] O| 210/ 0.00|

+ S + + +
5. Clocking

+ S + + +

| Site Type | Used | Fixed | Available | Util% |

+ S + + +

| BUFGCTRL | 1] O] 32| 3.13 |

|BUFIO | 0| O] 241 0.00 |

| MMCME2 ADV| 0| O] 6] 0.00 |
|PLLE2 ADV | 0| O] 6] 0.00 |

IBUFMRCE | 0| 0| 12 0.00]
IBUFHCE | 0| 0] 96| 0.00|
IBUFR | 0] 0| 24| 0.00]
+ + + + + +

6. Specific Feature

+ S + + +
| Site Type | Used | Fixed | Available | Util% |
+ S + + +
|BSCANE2 | 0] O] 41 0.00 |

CAPTUREE2	0	O] 1] 0.00
DNA PORT	0	O] 1] 0.00
EFUSE USR	0] O] 1] 0.00	

FRAME ECCE2	0	O] 1] 0.00
ICAPE2	0	O] 21 0.00
IPCIE2 1	0] O] 1] 0.00	

40

|STARTUPE2 | 0| 0| 1] 0.00]
IXADC | 0] 0] 1]0.00]
+ + + + + +

7. Primitives

+ + + +

| Ref Name | Used | Functional Category |
+ + + +

| FDRE | 210| Flop & Latch |
|OBUF | 39 10 |

|IBUF | 21| 10 |

|FDCE | 21| Flop & Latch |
| DSP48E1 | 12| Block Arithmetic |

ILUT6 | 2| LUT |
ILUT3 | 2| LUT |
ILUT2 | 2| LUT|
ILUTS | 1| LUT |
|ILUT4 | 1| LUT|
ILUTL | 1| LUT|
IBUFG | 1| Clock |
+ — +

8. Black Boxes

R SR +
| Ref Name | Used |
S — S +

9. Instantiated Netlists

R SR +
| Ref Name | Used |
SR SR +

Figure 27. Utilization Report for The Design

41

CONCLUSION

The optimized outputs from ACO are obtained. The gaussian distribution equation is
converted into behavioral modelling of Verilog. These are the required coefficients given as
an input for the Verilog code in behavioral modelling. Along with these obtained coefticients
the FIR FILTER code is written in Verilog using Xilinx Vivado software. And this is
convolved with the FIR code, which improved the effectiveness, decreased design error

(ACO) and speed up execution process (DE) while discharging their limitations.

Hence by passing the optimized outputs from ACO and by giving them as input to FIR filter
code in Verilog in behavioral modelling using Vivado software, we obtained an optimized

VLSI ARCHITECTURE FOR FIR FILTER USING ANT COLONY OPTIMIZATION.

42

APPENDIX

A.OVERVIEW OF DIGITAL SYSTEM DESIGN AND VLSI
ARCHITECTURE

EVOLUTION OF COMPUTER SYSTEM DESIGN

Digital circuit design has evolved rapidly over the last 25 years. The earliest
digital circuits were designed with vacuum tubes and transistors. Integrated circuits were
then invented where logic gates were placed on a single chip. The first integrated
circuit(IC) chips were SSI (Small Scale Integration) chips where the gate count was very
small.

As technologies become sophisticated, designers were able to place circuits with
hundreds of gates on a chip. These chips were called MSI (Medium Scale Integration)
chips. With the advent of LSI (Large Scale Integration), designers could put thousands of
gates on a single chip. At this point, design processes started getting very complicated,
and designers felt need to automate these processes. Computer Aided Design (CAD)
techniques began to evolve. Chips designers began to use circuit and logic simulation
techniques to verify the functionality of building blocks of the order of about 100
transistors. The circuits were still tested on the breadboard, and the layout was done on
paper by hand on a graphic computer terminal.

With the advent of VLSI (Very Large Scale Integration) technology, designers
could design single chips with more than 100,000 transistors. Because of the complexity
of these circuits, it was not possible to verify these circuits on the breadboard. Computer-
aided technologies became critical for verification and design of VLSI digital circuits.
Computer programs to do automatic placement and routing of circuit layouts also
became popular. The designers were now building gate-level digital circuits manually on
graphic terminals. They would build small building blocks and then derive higher-level
blocks from them. This process would continue until they had built the top-level block.
Logic simulators came into existence to verify the functionality of these circuits before

they were fabricated on chip.

43

DESIGN SPECIFICATION

Digital design flow begins with specification of the design at various level of
abstraction. It describes the functionality, interface and overall architecture of digital
circuits to be designed. The design specifications generally presented as a document
describing a set of functionalities that the final solution will have to provide and set
constraints that it must satisfy. At this point, architects do not need to think about how
they will implement the circuit.

BEHAVIOUR DESCRIPTION

In this process, circuit details and electronic components are not specified.
Instead, the behavior of each block at the highest level of abstraction is modeling. The
behavioural approach to modeling hardware components is different from circuit design
in that it does not necessarily reflect hoe the design is implemented. It is basically an
algorithmic and black box approach to modeling. It accurately models what happens on
the inputs and outputs of the box. For example, if you wish to simulate the operation of
your custom design connected to a commercial part like a microprocessor. In this case,
the microprocessor is complex and its internal operation is irrelevant (only the external
behavior is important). Behaviour descriptions are important as they corroborate the
integrity of design idea.

BEHAVIOUR DESCRIPTION TO RTL

The designer starts with an abstract description of the circuit called the
behavioural model. This kind of description is used primarily to verify the methodology
and functioning of the circuit. The next step is to transform this description something
closer to electronic circuitry. In other words, the behavioural description needs to be
converted to RTL (Registered transfer language) a functional or RTL description
describes a circuit in terms of its registers and the combinational logic between the
registers. This behavior synthesis can either be done manually or automatically by
software, The essential goal of doing this is to use logic synthesizers that makes this
form of description and synthesizes it to sets of registers and combinational logic, which

can be readily shipped to FPGA.

44

FUNCTIONAL VERIFICATION AND TESTING
With the RTL design, the functional design of our digital system ends and its

verification begins. From this point onward, the design process is done with the
assistance of CAD tools. The underlying motivation is to remove all possible design
errors before proceeding to the expensive chip manufacturing. Verification methodology
still lacks any standard or even commonly accepted approach. The industrial approach to
verification is functional validation. The functional model of the design is simulated
with meaningful input stimuli and the output is checked for expected behavior. This

model used for simulation is the RTL.

VLSI ARCHITECTURE

Very-large-scale integration (VLSI) is the process of creating an Integrated Circuit (IC)
by combining thousands of transistors into a single chip. VLSI began in the 1970s when
complex semiconductor and communication technologies were being developed.

The microprocessor is a VLSI device.

Before the introduction of VLSI technology, most ICs had a limited set of functions they could
perform. An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI
lets IC designers add all of these into one chip.

The electronics industry has achieved a phenomenal growth over the last few decades, mainly
due to the rapid advances in large scale integration technologies and system design applications.
With the advent of very large scale integration (VLSI) designs, the number of applications of
integrated circuits (ICs) in high-performance computing, controls, telecommunications, image

and video processing, and consumer electronics has been rising at a very fast pace.

The current cutting-edge technologies such as high resolution and low bit-rate video and
cellular communications provide the end-users a marvelous amount of applications, processing
power and portability. This trend is expected to grow rapidly, with very important implications

on VLSI design and systems design.

VLSI DESIGN FLOW
The VLSI IC circuits design flow is shown in the figure below. The various levels of

design are numbered and the blocks show processes in the design flow.

45

Specifications comes first, they describe abstractly, the functionality, interface, and the

architecture of the digital IC circuit to be designed.

Behavioral description is then created to analyze the design in terms of functionality,

performance, compliance to given standards, and other specifications.

RTL description is done using HDLs. This RTL description is simulated to test functionality.

From here onwards we need the help of EDA tools.

RTL description is then converted to a gate-level netlist using logic synthesis tools. A gatelevel
netlist is a description of the circuit in terms of gates and connections between them, which are

made in such a way that they meet the timing, power and area specifications.

Finally, a physical layout is made, which will be verified and then sent to fabrication.

E|:|-> System
Specification
; | e Spi>-

v Architectural Partitioning =
ENTITY test is Design / '
port a: in bit, \P
ereENTTY Y | Functional Design Chip Planning

v and Logic Design

+ H E B E N

ﬁ Circuit Design Placement . D D:' .

Physical Design

Clock Tree Synthesis

¥ Physical Verification| .

" E N EE
DRC and Signoff : :]
Lvs " Signal Routing : r .
2 Fabrication TR

Arh v 4 Timing Closure ITF .
1] - T
t 7 Packaging e
v and Testing
%
@ Chip

Figure 28. VLSI Design Flow

46

B. INTRODUCTION TO VERILOG

INTRODUCTION
Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used

to model electronic systems. It is most commonly used in design and verification of

digital circuits at the regular -transfer level of abstraction. It is also used in verification of

analog circuits and mixed signal circuits HDL’s allows the design to be simulated earlier

in the design circuits in order to correct errors or experiments with different

architectures.

Designs described in HDL are technology independent, easy to design and debug,

and are usually more readable than schematics, particularly for large circuits. Verilog can

be used to describe designs at four levels if abstractions:

1) Algorithmic level (much like as code if, case and loop statements).
2) Register transfer level (RTL uses registers connected by Boolean equations)
3) Gate level (interconnected AND, NOR etc.).

4) Switch level (the switches are MOS transistors inside gates).

A Verilog design consists of a hierarchy of modules. Modules encapsulate design

hierarchy, and communicate with other modules through a set of declared input, output

and bidirectional ports.

Internally, a module can contain any combination of the following: net/variable

declarations (wire, reg, integer, etc.), concurrent and sequential statement blocks, and

instances of other modules (sub-hierarchies).

FEATURES OF VERILOG HDL

Verilog HDL offers many useful features for hardware design

Verilog (verify logic) HDL is general purpose hardware description language that is easy
to learn and easy to use. It is similar in syntax to C programming language. Designers
with C programming experience will find it easy to learn Verilog HDL.

Verilog HDL allows different levels of abstraction to be mixed in the same model. Thus a

designer can define a hardware model in terms of switches, gates, RTL, or behaviour

47

code. Also a designer needs to learn only one language for stimulus and hierarchical
designs.

Most popular logic synthesis tools support Verilog HDL. This makes it the language of
choice for designers.

All fabrication vendors provide Verilog HDL libraries for post logic synthesis simulation.
Thus designing a chip in Verilog HDL allows the widest choice of vendors.

The Programming language interface (PLI) is a powerful feature that allows the user to
custom C code to interact with the internal data structures of Verilog. Designers can
customize a Verilog HDL simulator to their need with the Programming language

interface (PLI).

MODULE DECLARATION

A module is the principal design entity in Verilog. The first line of a module declaration

specifies the name and port list (arguments). The next few lines specifies the I/O type

(input,

output or inout) and width of each port. The default port with is 1 bit. Then the

port variables must be declared wire, reg. The default is wire. Typically inputs are wire

since their data is latched outside the module. Outputs are type regif their signals were

stored inside always or initial block.

Syntax

module model name(port_list);
input[msb:lsb] input_port_list;
output|msb:lsb] output port_list;

inout[msb:lsb] inout_port list;

endmodule

Example

module add sub(add, inl, in2, oot);
inputadd;//defaults to wire
input[7:0] inl, in2, wire inl, in2;

48

Output|7:0] oot;

regoot;

Endmodule
VERILOG MODELLING

Verilog has four levels of modelling:
1) The switch level Modeling.
2) Gate- level Modeling.
3) The Data-Flow level.

4) The behavioural or procedural level.

Switch level Modeling:
A circuit is defined by explicity showing how to constrct it using transistors like

pmos and nmos, predefined modules.

Example
module inverter (out,in);

output out;

input in;
SupplyOgnd;
Supplylvdd;
nmosx1(out, in, gnd);
pmosx2(out, in, vdd);

endmodule

Gate level modelling

A circuit is defined by explicitly showing how to correct it using logic gates.
Predefined modules, and the connections between them. In this first we think of our
circuit as a box or module which is encapsulated from its outer environment, in such a
way that its only communication with the outer environment, is through input and output
ports. We then set out to describe structure within the module by explicitly describing its

gates and sub modules, and how they connect with one another as well as to the module

49

ports.In other words, structural modelling is used to draw a schematic diagram for the
circuit. As an example, consider the full-adder below.
Example

module fulladder (a, b, sum, Cout);

input a, b;

output sum, Cout;

xorxl1(a, b,y);

xor x2(a, b, y);

endmodule

Data-flow modelling

Dataflow modeling uses Boolean expressions and operators. In this we use assign

statement.
Example

module fulladder (a, b, sum, Cout);

input a, b;

output sum, Cout;

assign sum=a”b;

assign Cout=a"b;

endmodule

Behavioural modeling

It is higher level of modeling where behaviour of logic is modelled. Verilog behavioural
Code is inside procedure blocks, but there is an exception:some behavioural code also
exist outside procedure blocks. There are two types of procedural blocks in Verilog .

Initial: initial blocks execute only once at time zero (start execution at time zero)
Always: always blocks loop to execute over and over again; in other words, as other

words as the name suggests, it executes always.
An always statement executes repeatedly, it starts and its execution at other 0 ns
Syntax: a/ways@ (sensitivity list)
Begin
Procedural statements
end

50

Example
module fulladder (a, b, clk, sum);
input a, b, clk;
output sum,;
always@ (posedgeclk)
begin
sum= a+b;
endmodule

SOFTWARE DESIGN AND DEVELOPMENT

A description of the hardware's structure and behaviour is written in a high-level
hardware description language (usually VHDL or Verilog) and those codes is then
compiled and downloaded prior to execution. Although schematic capture can be used
for design entry but due to more complex designs and the improvement of the language-
based tools it has become less popular.

The most distinct difference between hardware and software design is the way a
developer must think about the problem. Software developers tend to think sequentially,
even when they are tasked to program a multithread application. Most of the time, the
source code is always executed in that order. At the design entry phase, hardware
designers must think and program in parallel.

All of the input signals are processed in parallel: inside each ore is a series of macro
cells and interconnections routed toward their destination output signals. Therefore, the
statement of a hardware description language creates structures, all of which are process
at the very same time. (Normally the link between each macro cell to another macro cell
usually -synchronized to some other signal, like a common clock).

In a typical design, after each design entry is completed, the next step is to perform
periods of functional simulation. This is where a simulator comes in place. It is used to
execute the design and confirm that the correct/required outputs are produced for a given
set of test inputs.

This step is to ensure the designer that his/her logic is functionally correct before
going on to the next stage development. This is a good practice as compared to
simulating a full-scale design entry. As the design entry gets more complex, the

troubleshooting will be much difficult and time consuming.

51

SOFTWARE TOOLS USED

XILINX VIVADO

MATLAB

VIVADO enables developers to synthesize their designs, perform timing analysis
examine RTL diagrams, simulate a design's reaction to different stimuli, and configure
the target device with the programmer. Vivado is a design environment for FPGA
products from Xilinx, and is tightly-coupled to the architecture of such chips, and cannot
be used with FPGA products from other vendors.

MATLAB is used for proof of concept.

LANGUAGE SUPPORT
The Vivado High-Level Synthesis compiler enables C, C++ and SystemC programs to be

directly targeted into Xilinx devices without the need to manually create RTL. Vivado
HLS is widely reviewed to increase developer productivity, and is confirmed to support
C++ classes, templates, functions and operator overloading.

Xilinx vivado enables simulation, verification and synthesis for the following languages

VYHDL

Verilog

Svstem Verilog

52

C.XILINX VIVADO

XILINX VIVADO ISE DESIGN SUITE (16.1version)

Xilinx is a powerful software tool that is used to design, synthesize,
simulate, test and verify digital circuit designs. The designer can describe the digital
design by either using the schematic entry tool or a hardware description language. In
this software we will create VHDL design input files — the hardware description of the
logic circuit, compile VHDL source files, create a test bench and simulate the design to
make sure of the correct operation of the design (functional simulation). The purpose of
this is to give new users an exposure to the basic and necessary steps to implement and
examine your own designs using ISE environment. In this, we will design one simple
module (OR gate); however, in the future, you will be designing such modules and
completing the overall circuit design from these existing files. A VHDL input file in the
Xilinx environment consists of: Entity Declarations: module name and interface
specifications (I/O) — list of input and output ports; their mode, which is direction of data
flow; and data type. Architecture: defines a component’s logic operation.

There are different styles for the architecture body: (i)Behavioural — set of sequential
assignment statements (i1) Data Flow — set of concurrent assignments o Structural — set
of interconnected components A combination of these could be used, but in this tutorial
we will use Dataflow. In its simplest form, the architectural body will take the following
format, regardless of the style: architecture architecture _name of entity name is begin ...
-- statement end architecture name;

ISE (Integrated Software Environment) is a software tool produced by Xilinx for
synthesis and analysis of HDL designs, enabling the developer to synthesize (“‘compile”)
their designs, perform timing analysis, examine RTL diagrams, simulate a design’s
reaction to different simuli, and configure the target device with the programmer.

Xilinx is an American technology company, primarily a supplier of
programmable logic devices. It is known for inventing FPGA.
The Xilinx ISE is primarily used for circuit synthesis and design, while the

Modelsim logic simulator is used for system-level testing.

53

ISE PROJECT NAVIGATOR

In this section, we introduce the reader to the main components of an “ISE
Project Navigator” window, which allows us to manage our design files and move our

design process from creation to synthesis and to simulation phase.

4" Vivado 20161 - 8 x
Fe Fon Tods Wndow Hep

ADO! £ XILINX
VIVADO! X
HLx Editions aLEoaRINO
Quick Start Recent Projects
project 3
3 f internaleb 86
X ¢
CreateNew Project Openroject Open Example Prject project 8
ot 7
et projct
B boys
, #
i
/ « u project 2
Manage IP ‘Open Hardware Manager Xiinx Td Store.
projct_
Information Center project5
y, o s ﬂ proct 6
‘J % - project 4
Doaumentaton and Tutaiss Quik Take Videos Releas Notes Guide

Figure 29. Xilinx Vivado Project Navigation Window

By opening the Xilinx vivado ISE suite, we will come to see the 3 main points. They are
1) Quick start
2) Tasks

3) Information Center

In the Quick start block, We have create a new project, open project and open
example project.

In the Tasks, We have Manage IP, open hardware manager, xilinx Td store.

In the Information center, we have documentation and tutorials,quick take videos
and release notes guide.
This section describes the four basic steps to working with a project.
Step 1— Creating a New Project
This creates .xpr file and a working library.
Step 2— Adding Items to the project
Projects can reference or include source files, folders for organizations, simulations, and
any other files you want to associate with the project. You can copy files into the project

directory or simply create mappings to files in other locations.

54

Step 3—— Compiling the Files

This checks syntax and semantics and creates the pseudo machine code that Viavdo uses
for simulation.

Step 4—— Simulating a Design

This specifies the design unit you want to simulate and opens a structure tab in the
workspace pane.

you specify will be used to create a working library subdirectory within the Project

In order to start ISE double click the desktop icon: Or click:

Creating a New Project

2

After launching Vivado, from the startup page click the “Create New Project

icon. Alternatively, you can select File -> New Project

0 - 8 x
Fom Tosk wndow beb

VIVADO! £ XILINX
Quick Start :‘“’“m

L 02 B =

& @ % -

2.8 3 :

Figure 30. Creating New Project Window

The New Project wizard will launch, click the “Next > button to proceed

/
He Fon Tods Wndow Heb

VIVADO! 1 e x| £ XILINX
HLx Editions sl
Create a New Vivado Project
’
Quick Start VIVADO! This wzaed il uide you through the crestion of new projec ‘
e Tocreatea Next, you wil bes
£ speafy the type of fiow you'l be workang with. Finally, you wil specify your project sources and choose
= defauit part.
\ }
Creae Newproject OpenProgect
}
Tasks ls
Ver =
= " o
Manage P Open arare Mansger
Information Center
1 &
%
9 B
DoamentatonandTutrss QuckTake Vdeos fosioe
Tocontrue, Ak ext
* Cancel

ject ough anew project.

Figure 31. Guiding Wizard of the Project
55

Enter a project name and select a project location. Make certain there are NO
SPACES in either! It’s not a bad idea to only use letters, numbers, and underscores as well. If
necessary simply create a new directory for your Xilinx Vivado projects in your root drive (e.g.
C:\Vivado). You will likely always want to select the “Create project sub-directory” check-box
as well. This keeps things neatly organized with a directory for each project and helps avoid

problems. Click the “Next > button to proceed.

s
He Fox Tods Wedow Heb

4 %
VIVADO. py— x < XILINX
HLx Editions Project Name AL PROGRAMNASLE
Enter & name for your project and specfy a drectory where the project deta fles vl be stored. ‘
Quick Start
Brojectname: camy
il I3
% = Project focaton: C: Users/SIMLATIOND3 Deskionka)
Create New Project Open Project [Creste project subdrectory
pec ot C: Users S,
Tasks
| L
Manage P Open Hardware Mansger

3 Td Console

New Project Wizard wil gude you through the o and s target new prowct.

Figure 32. Creating a Project Name

Select the “RTL Project” radial and select the “Do not specify sources at this
time” check-box. If you don’t select the check-box the wizard will take you through
some additional steps to optionally add pre existing items such as VHDL or Verilog
source files, Vivado IP blocks, and .XDC constraint files for device pin and timing
configuration. For this first project you will add the necessary items later. Click the

“Next > button to proceed.

VIVADO' £ XILINX

Figure 33. Specifying the RTL project

56

You need to filter down to and select the specific part number for your project. You can
physically read the markings on your chip or refer to your board’s documentation to find its part
number. In the case of the Basys 3 it’s the Artix-7 chip that’s on the board, and the filters shown
will help you get to the correct device that’s highlighted. Once you select the correct device

click the “Next >” button to proceed.

VIVADO! " (i g L

Editions Default Part

Quick Start

inuNsssEFs 2

F igure 34. Choosing a Board for The Project

Click the “Finish” button and Vivado will proceed to create your project as specified.

/
Fle Fow Tools Window Hep s

/

VIVADO P x £ XILINX

HLx Editions ALL PROGRAMMABLE.
New Project Summary
- ’
ners VDO e e
yin £ 85/prore
Y (2] b e
Product: Vrtex-7

amiy: Vitex-7
Padage: fig11s7
Speed Grade: -1

m’.ﬁ Open Hardhare Manager i
a_ B
0 (1 E
<o || Cancel
) Figure 35. i;foject Summary
STEPS FOR DESIGN ENTRY

Working through the Basic Project Flow
The Vivado project window contains a lot of information, and the information displayed

can change depending on what part of the design you currently have open as you work through

57

the steps of your project. Keep this in mind as you work through this guide, because if you don’t
see a specific sub-window or sub-window tab it’s possible you aren’t in the correct part of the

design.

The “Flow Navigator” on the left side of the screen has all the major project phases organized
from top to bottom in their natural chronological order. You begin in the “Project Manager”
portion of the flow and the header at the top of the screen next to the Flow Navigator reflects
this. This header and the corresponding highlighted section in the Flow Navigator will tell you

which phase of the design you have open.

4 canny - [C/Users/SMULATIONO3/Deshtop/ e canny/
e £t Fow Toos yndow Layout
oo RlX P DK LG [Boetieyout - HeKR|© Ready
[— 7« | Project Manager camy 7 x

cannypr] - Vivado 20161 - 8 x

aQ Z @ Sarcea r— 0w | coe x
4 Project Manager L — Project Settings. 3
@ proect settngs < Constrants Projectname: canny
% add sources 55 Smaton Sources Projectiocaton; Ci/Users/STMULATIONO3 Desktopfrajfcanny
§ Language Tenplates
T pcaog

4 Pintegatac Hierarchy | Lbrares | Conple Order
3, Create Block Desion

Propertes 2-Dex

A Name Constants Status WNS TNS WHS THS TPWS FaledRoutes LUT FF BRAM LRAM DS Start Eapsed Stategy

ot Gonstrs 1 Notstaried Vwado

59 5 7d Console | © Messages | GlLog | 1 Reports , Design Runs

Figure 36. Main Window for The Project

Project Manager

Project Settings:

Begin by clicking on “Project Settings” under the Project Manager phase of the Flow

Navigator

PP

i

Figure 37. Project Settings Window

58

There are a lot of settings available here for all phases of the project flow, but for now just select
“System Verilog” from the drop-down for the “Target language” in the “General” project
settings and click the “OK” button.

Add Sources:

Now click on “Add Sources” under the Project Manager phase of the Flow Navigator

4 canny-[C ATIO! p/raj/canny/canny.xpr] - Vivado 2016.1 - 8 X
Fle Edt Fow Toos Window Llayout View Hebp Qs
BOoRRXS D NS XK LG Exmtan | X SN Ready
Flow Navigator 2 « | Project Manager camy 2 x|

=8 Sources 2— 02 X || [project summary x 202 x
— A T | 3l
|4 Project Manager [bl RE Project Settings gat |
@ Project Settings te: Ctrl+E Project name: canny
3% Add Sources Hierarchy Update > Pr C:JUsers/SIMUL
Q Language Templates ISM_ & Refresh Hierarchy Product famiy: Virtex-7
LF 1P Catalog TP Hierarchy Project part: XCIVxaBSfa1157-1
Edit Constraints Sets... ‘ ||| Top modue name: ot defined
4 1P Integrator | Hierarchy | L | ‘||| Targetlanguage: Veriog
i create 5 Simulator language: Mixed
’;zoﬂ o Propertes |[£2_Add Sources... AtAl_ o x =
pen Block Design -
3 Synthesis Implementation
& Generate Block Design o) "@ k it
Status: Not started Status: Not started
4 Simulation Messages: No errors or warnings Messages: No errors or warnings
& simulation Settings il Select an object to see properties Part: XCPVx485tffg1157-1 Part: XCvx485tffg1157-1
(@ Run Simulation il Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
Incremental comple: None v
4 RMLAnayss 00—
@ Blaboration Settings Design Runs 2 -0 %X
» 5% Open Elaborated Design X Name Constraints Status ~ WNS TNS WHS THS TPWS FaledRoutes LUT FF BRAM URAM DSP Start Blapsed Strategy
X |- synth_t constrs_1 Notstarted Vivado Synthesi:
4 Synthesis e = impl_t constrs_1 Notstarted Vivado Implemer
=]
@ Synthesis Settings N
$ Run Synthesis "
b [Open Synthesized Desig, »
4 Implementation «
@ Implementation Settings =5
[> Run Implementation < 5
b @ Open Implemented Desic | " [ETd Console | () Messages | Gl Log |) Reports: 3 Design Runs | G
Spedify and/or create source files to add to the project
. . .
Figure 38. Adding Source Files
113 : kR : : 113 R
Select the “Add or create design sources” radial and then click the “Next >” button
£ cann Users/SIMULATIONO3/Desktop/raj/canny/canny.xpr] - Vivado 2016 - a
Fle Edt Fow Toos Window Llayout View Help Q-s
BowaRlkX P DX S XK LG [Sochutiayon [HeN|® Ready
Flow Navigator 2 « | Project - 2.%)
[| ¢ Add Sources X 2 00 X
el F ~
|4 projectManager || " Add Sources eat
S 282 vivADO!
e b) This quides you through the process of adding and creating sources for your project
o asorcs s VIVAZY
© Language Templates O Add or greate constraints
1P Cat
¥ =g (@) Add or create design sources
& I Integtn [Hierarchy | (O Add or create smulation sources
% Create Block Design
BB Open BockbDesgn Properties (O Add or create DSP sources s
& Generate Block Design - "@ (O Add existing block design sources
Not started
4 Smuation Ofddeien B No errors or warmings
@ Smulation Settings XCVX485tFfg1157-1
(@) Run Simulation Vivado Implementation Defaults
None v
4 RTL Analysis
@ Baboration Settings Design Runs [?-0wE X
» 5% Open Elaborated Design & Name Start Elapsed Strategy
XD s Vivado Synthesi
4 Synthesis @ Vivado Implemer
@ S setngs > £ XILINX
> Run Synthesis I ey oie. To continue, cick Next
b B Open Synthesized Desigr »
2 <Back Ensh Cancel
4 Implementation «
@ Implementation Settings =+
[> Run Implementation < 5
b [@B¥ Open Implemented Desc | | Td Console | O Messages | G Log | 1 Reports, 3 Design Runs |

Figure 39. Wizard That Shows the Design Rules

59

Click the “Create File” button or click the green “+” symbol in the upper left corner and select

Add or Create Design Sources

Specify HDL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and
add it to your project.

Add Files...
Add Directories...
LT E L

Use Add Files, Add Directories or Create File buttons below

Add Files ‘ | Add Directorie Create File ‘

Scan and add RTL include files into project
Copy sources into preject

Add sources from subdirectorias

Cancel

Figure 40. Creating New Name for New Design

Make sure the options shown are selected in the “Create Source File” popup, and for the sake of
following along enter “convolution(Gaussian filter)” for the “File name”. Click the “OK” button

when finished.

You can normally enter anything you like for the “File name” as long as it’s valid, but always

make certain there are NO SPACES!

/
Fe Edt Fow Toos Wndow Loyout Vew Hep

el X® D XS XK L G [Boefutlayount HeN® Ready
Flow Navigator 2« | Project Manager camy 2 X
QZT® Sowces | # 2O e x
TP A || [Z 21| Add or Create Design Sources ==
oject Hamager Byt e e B 5, e Bt i s e ot adints f =
@ Project ettngs W vour project
&% Add sources o
Q Language Templates St
£F P Catalog =
t
4 PIntegrator Hierarchy| 4 4 Create Source File 3
7, Create Bock Design i
» 4 Propertes Create anew source fie and add it to your project.
P « = [
Hetpe: [@Sysmverion orstared
4 Smaton o erors o warmings
@ Smuaton Settings e rans: | corshusen XAXABSHIG11S7-1
@ Run Smulaton Figlocaton: |2 <Local to Project>
4 RTLAnalysss 7 o] cone
@ Babocation Settings Design Runs. f P LI
&% Open Elaborated Design X Name Ndties BRI | aese e Start. Elapsed Strategy
T sy Vivado Synthest
4 Synthesis) I | Vivado Impleme
@ Synthesis Settings S
b“ Run Synt 4
B Opensyr »
<Back Cancel
4 Inplementaton «
@ Inplementation Settings F
> Run Implementation =9 >
1) Open inplemented Desc. 5 7d Console | © Messages | SlLog | 15 Reports , 3 Design Runs

Specfy andor reate source fies to add to the project

Figure 41. Selecting The Type of File And Location

60

Click the “Finish” button and Vivado will then bring up the “Define Module” window.

Define Module:

You can use the “Define Module” window to automatically write some of the VHDL code for
you. Additional “I/O Port Definitions” can be added by either clicking the green “+” symbol in
the upper left or by simply clicking on the next empty line. The “Entity name” and “Architecture
name” will be the corresponding Verilog HDL identifiers used in the code, as will whatever is
typed in for each “Port Name”. Any valid verilog HDL identifier can be used for any of these,
but for the sake of following along enter the information as shown. Make sure the proper

“Direction” is set for each. Click the “OK” button when finished.

Note that if you would rather write your own code from scratch you can simply click the
“Cancel” button and Vivado will create a completely blank System verilog VHDL source file
inside your project. If you click the “OK” button without defining any “I/O Port Definitions”
Vivado will still write the basic Verilog HDL code structure but the port definition will be empty

and commented out for you to uncomment and fill later.

Also note that the port names here match the silkscreen reference designators of the switches and
LEDs on the Basys 3 board that will be utilized for the example. This is for the convenience of
those following along with the Basys 3, but should not be inferred as a requirement by beginners;

each name is simply an arbitrary identifier.

P v X
Fle Edt Fow Toos Window Layout View Help

92

e RRX S D UG K LG Eocwem | X 8N © Ready
Flow Navigator 2 «| | Project Manager - canny 2 X
AT Sources 2—02 X || [Erroject summary x 200 X
~ = % ; [
£ Project Manager TSR Bv Define Modul X et | &
ine Module
@ Project settings [Updating Hierarchy...
&Y Add Sources g0zsion Sources Define a modue and specify 1/0 Ports to add to your source fie.
o -8 Constraints For each port specified:
/' Language Templates -{5 Simulation Sources MSB and LSB values wil be ignored unless its Bus column is checked. ﬂ
©sm_1 Ports with blank names wil not be written.
LF 1P Catalog
Module Definition
4 P Integrator | Hierarchy | Libraries | Compile| A
B, Create Block Design M Convolitan
B9 Open Block Design ”“"‘; 1/0 Port Definitions T
: Implement
& Generate Block Design haind ' L = PortName Direction Bus MSB LSB
s Tt ™] tatus: Not started
4 Smulation + Messages: No errors or warnings
@ Simulation Settings Selectan 3 art: Xc7vx485tffg1157-1
@ Run Smulation trategy: Vivado Implementation Defaults
Incremental compile: None v
4 RTL Analysis
@ Blaboration Settings Design Runs B E
{5 Open Elaborated Design A | Name URAM DSP Start Elapsed Strategy
5 ch synth_1 Vivado Synthesi:
4 Synthesis o =% impl_1 Vivado Implemer
@ Synthesis Settings >
> Run synthesis 1« ? o[concel
¥ Open Synthesized Desigr »
4 Implementation «“
& Implementation Settings =3
[> Run Implementation o < >
% Open Implemented Desic | | 3 Td Console | © Messages | B Log | 3 Reports', > Design Runs

Figure 42. Module Defining with Ports

61

The System Verilog HDL source file generated will be added to your project in the
“Design Sources” folder as shown. Double click it and it will open up in a new tab for
you to view/edit. All the code here was generated by the previous “Define Module”
window, and for this example you only need to manually enter the three highlighted lines

between the “begin” and “end” keywords.

If we want to create a simulation source, we have to select a new simulation source by

right clicking the add source block in the panel.

’
Fle Edt Fow Toos Window Layout View Help

SR X DD B S X L (G [S0ehutLayut P & 2 Y2 Ready
Flow Navigator 2 & | Project Manager project_1 ? X
=2 Sources. ¢ Add Sources X 2 O X
Al e = F A
4 Project Manager Add Sources Edit
i s553 NVADO! B — o
This ou through the process of adding and creating sources for your project
Y Add Sources 2 HLx Eations ! " roendestne il
o s
Q Language Templates (O Add or greate constraints
1F 1P Catalog
- (O Add or create design sources
S In;g«ator Nierard\y‘ (®) Add or create simulation sources
#; Create Block Design
Properties (O Add or create DSP sources
=)
halnd </ (O Add existing block design sources
Not started
4 Simuation : Orddesing No errors or warnings
3 Smulation Settings : XCTVx485tffg1157-1
(@ Run Smulation Vivado Implementation Defaults
None <
4 RITL Analysis
& Elaboration Settings Design Runs I [e
{5 Open Elaborated Design A | Name Start Elapsed Strategy
p=EE Vivado Synthesi
4 Synthesis o E Vivado Implemer
= -
@ syminess setogs > & XILINX
> Run Synthesis M ALL PROGRAMNABLE. To continue, chck Next
¥ Open Synthesized Desigr »
? <Back [Next> | Finish Cancel
4 Implementation « _
& Implementation Settings =5
[» Run Implementation — 5>
8% Open Implemented Desic , | | ™" Td Console | (Messages | i Log | 12 Reports, 3> Design Runs

andlor create source files to add to the neoiect

; 244PM
O Type here to search i L A Ldx NG

3/12/2019 E‘

Figure 43. Creating the Simulation Source

62

10.

REFERENCES

. Tintu mary john, Chacko, Shanty (2020) , “ Efficient VLSI Architecture For FIR

FILTER Design Using Modified Differential Evolution Ant Colony Optimization
Algorithm” Emerald publications.

Kumar, N.R. (2018), “A review of low-power VLSI technology developments”,
Innovations in Electronics and Communication Engineering, Springer, pp. 17-27.
Kaur, S. Singh, B. and Singh, M. (2016), “Different design approaches for the
optimization of FIR filter coefficients”, International Journal of Engineering
Research & Technology (IJERT), Vol. 1 No. 7.

Rani, T. and Bansal, P. (2017), “Applications and variants of ant colony
optimization in design of digital filters: a review”, International Journal of

Electronics, Electrical and Computational System.

Xu et al. (2011) proposed an empirical approach depending on ACO for the design of
multiplier-less FIR filters with signedpower-of-two (SPT) coefficient. The number of
adders needed for filtering with constant SPT coefficients can be reduced by minimizing
non-zero SPT, through gathering the essential specifications of the filter.

Sasahara and Suyama (2017) studied design of FIR filters with CSD coefficients using
ACO technique.

Chattopadhyay et al. (2014) proposed DE-optimized filter as a pulse-shaping filter in a
Quadrature Phase Shift Keying modulated system.

Pusegaonkar et al. (2014) implemented low power digit-serial FIR filters using Multiple
Constant Multiplication techniques.

Aggarwal et al. (2013) implemented the FIR filter using Simulink and FPGA which
increases the speed of operation by its parallel processing capability.

Kaur et al. (2016) discussed the designing approaches for linear phase FIR filter. They
also compared the existing systems in terms of maximum stop band ripple, maximum

pass band ripple, transition width, and maximum stop band attenuation.

PUBLICATION

1. N.Puyjitha Vaidya, Ch.Rohit, Ch.Phani, Y.Sarvendra and Srinivas Sabbavarapu,
”ACO Based FIR Filter Implementation on FPGA”, Manuscript submitted to
Intelligent Systems with Applications (ISWA).

64

